摘要: 流程工业中涉及多个复杂设备的耦合,独立设备模型无法有效指导实际生产;纯数据驱动模型常因面临分布外泛化问题,难以体现良好的数据效率和泛化能力。对此,针对浮选这一典型的流程工业系统,提出了一种物理先验指导的神经微分方程模型,该模型考虑设备间耦合关系和全局特征,利用物理先验对神经微分方程进行重构,以建模可感知环境的单智能体。所提模型由序列编码器、插值模块、神经微分方程预测模块和状态解码器构成,并基于物理先验设计了神经微分方程的梯度网络计算图结构。将多智能体模型按照实际工序拓扑建立不同体系,可以实现浮选全流程的长时液位预测,并作为在线仿真环境协助实现多智能体协同控制。使用从浮选厂采集的工业数据集对该模型进行了验证,结果表明,与离散时间模型和未借助物理信息重构梯度网络的基线模型相比,所提模型具有更优的数据效率和泛化能力。
中图分类号: