北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (4): 98-104.

• 体系化人工智能专题 • 上一篇    下一篇

面向医学大模型的体系化人工智能框架构建与应用

罗妍,刘宇炀,李晓瑛,刘辉   

  1. 中国医学科学院北京协和医学院 医学信息研究所
  • 收稿日期:2023-12-28 修回日期:2024-03-22 出版日期:2024-08-28 发布日期:2024-08-26
  • 通讯作者: 刘辉 E-mail:Liuhui@ pumc. edu. cn
  • 基金资助:
    国家重点研发计划项目

Construction and Application of Holistic Artificial Intelligence System for Medical Large Language Models

LUO Yan, LIU Yuyang, LI Xiaoying, LIU Hui   

  • Received:2023-12-28 Revised:2024-03-22 Online:2024-08-28 Published:2024-08-26

摘要: 大语言模型具有强大的自我学习和理解能力,在医学领域具有巨大的发展潜力与应用价值。目前医学领域大语言模型的预训练数据量大、算力成本高、缺乏规范化标准与指标体系,极大地限制了大语言模型的扩展与应用。为解决上述问题,提出一种面向医疗全流程服务场景的体系化人工智能框架,通过知识分解和动态资源管理方法完成模型简化分解和原生网络构建实现模型的弹性部署和灵活配置,在一定程度上降低了大语言模型对算力资源的依赖;引入区块链技术保障医疗数据的安全可信。通过引入体系化人工智能概念构建了面向医学领域的体系化人工智能框架,期望促进医学大语言模型的快速落地与持续健康发展。

关键词: 体系化人工智能, 大语言模型, 知识分解, 原生网络

Abstract: Large language models ( LLMs ) are recognized for their powerful self-learning and understanding skills, as well as their huge development potential and application value in medical domain. However, current LLMs in the medical field are marked by an urgent demand for a large amount of pre-training data, high computing power costs, and a lack of standardized standards and indicator systems, which greatly limits its expansion and application. To address the above-mentioned issues, a systematic large-scale modeling framework is proposed for the whole medical process service scenario. Knowledge factorization and dynamic resource management methods are utilized in this framework to achieve model simplification and native network construction, enabling elastic deployment and flexible configuration of the models. The reliance on computational resources is reduced to some extent by this approach. Furthermore, blockchain technology is incorporated into the framework to ensure the security and trustworthiness of medical data. By introducing the concept of holistic artificial intelligence, a holistic artificial intelligence system framework for the medical field is constructed, aiming to promote the rapid implementation and sustain healthy development of medical LLMs.

Key words: holistic artificial intelligence , large language models ,  knowledge factorization ,  nativenetwork

中图分类号: