北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (4): 111-116.

• 论文 • 上一篇    下一篇

基于时序卷积网络的数据中心服务器能耗模型

周舟1,2,朱单2,李闯2,3,南苏琴2,文艳华2   

  1. 1. 长沙学院 计算机科学与工程学院 2. 湖南工商大学 计算机学院
    3. 长沙人工智能社会实验室

  • 收稿日期:2023-07-04 修回日期:2023-09-26 出版日期:2024-08-28 发布日期:2024-08-26
  • 通讯作者: 李闯 E-mail:chuangli@hutb.edu.cn
  • 基金资助:
    湖南省重点领域研发计划项目; 长沙市杰出创新青年培养计划项目; 湖南省自然科学基金青年项目; 湖南省教育厅科学研究项目

The Power Model of Data Center Server Based on Temporal Convolutional Network

ZHOU Zhou1,2, ZHU Dan2, LI Chuang2,3, NAN Suqin2, WEN Yanhua2   

  • Received:2023-07-04 Revised:2023-09-26 Online:2024-08-28 Published:2024-08-26

摘要: 为了解决服务器实时能耗估量问题,提出了一种基于时序卷积网络的数据中心服务器能耗预测模型。首先, 根据服务器所处理负载的不同将其分成 4 类,分别为中央处理器密集型负载、内存密集型负载、输入/ 输出密集型 负载和混合型负载;然后,针对每种类型负载,通过随机森林算法分别计算其特征参数的重要性并筛选出大于阈值 的代表性参数作为模型输入;最后,利用时序卷积网络构建数据中心服务器的能耗预测模型。实验结果表明,与其 他模型相比,所提模型的平均相对误差降低了 2.18% ~ 5.29% ,在能耗预测精度方面具有一定的优势。

关键词: 数据中心, 绿色计算, 能耗模型, 能耗预测

Abstract: To solve the problem of real-time server energy consumption estimation, a data center server energy consumption prediction method based on a temporal convolutional network is proposed. First, for the different workloads handled by the server, it is divided into four categories, namely central processing unit-intensive workload, memory-intensive workload, input / output intensive workload, and hybrid workload. Then, the method calculates the importance of characteristic parameters under four different workloads through a random forest algorithm and then selects representative parameters greater than the threshold as the input of the model. Finally, the temporal convolutional network is used to build the energy consumption prediction model of the data center server. The experimental results show that compared with other models, the average relative error of the proposed model is reduced by 2.18% ~5.29% , which has certain advantages in the accuracy of energy consumption prediction.

Key words: data center, green computing, energy consumption model, energy consumption prediction

中图分类号: