北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (s1): 72-76.doi: 10.13190/j.jbupt.2015.s1.017

• 论文 • 上一篇    下一篇

数据中心环境下能耗性能感知的优化方法

郭力争1,2, 张翼飞1, 赵曙光2   

  1. 1. 河南城建学院 计算机科学与工程学院, 河南 平顶山 467036;
    2. 东华大学 信息科学与技术学院, 上海 201620
  • 收稿日期:2014-04-28 出版日期:2015-06-28 发布日期:2015-06-28
  • 作者简介:郭力争(1975—), 男, 讲师, 博士生, E-mail: kftjhpds@163.com.
  • 基金资助:

    国家自然科学基金项目(61271114); 上海市教委科研创新重点项目(14ZZ068)

Optimization Method of Performance and Energy Consumption Aware under Data Center Environment

GUO Li-zheng1,2, ZHANG Yi-fei1, ZHAO Shu-guang2   

  1. 1. Department of Computer Science and Engineering, Henan University of Urban Construction, Henan Pingdingshan 467036, China;
    2. College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
  • Received:2014-04-28 Online:2015-06-28 Published:2015-06-28

摘要:

针对云计算环境下数据中心高能耗问题,提出了一种能耗性能感知的虚拟机动态整合方法,以优化能耗性能. 首先通过局部回归分析判定主机是否过载,利用均值法检测主机是否轻载,然后根据虚拟机最小迁移时间、最大和最小CPU利用率策略选择要迁移的虚拟机加入到迁移队列,最后运用能耗性能感知的虚拟机部署优化算法对虚拟机进行优化部署. 仿真结果显示,该算法不但提高了系统性能,而且也降低了系统能耗.

关键词: 性能, 能耗, 数据中心, 云计算, 虚拟化

Abstract:

In order to optimize the high energy consumption and to keep certain quality of service in the cloud computing data center, an optimization method for performance and energy aware was proposed. Firstly, local regression was used to determine whether the host is overloaded and using mean value determined whether the host is underloaded. And then, the virtual machine of the overloaded host was shifted into queue according to the minimum migration times and the maximum or minimum CPU utilization strategy. Finally, the performance and energy aware algorithm was designed to deploy the virtual machine in the queue and underloaded host. Simulations show that the proposed algorithm not only improves system performance but also reduces system energy consumption.

Key words: performance, energy consumption, data center, cloud computing, virtualization

中图分类号: