北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (3): 75-82.

• • 上一篇    下一篇

融合序列间显隐式关联的图卷积多维时序异常检测方法

张光耀1,2,高欣1,张云凯3,刘婧2,叶平1   

  1. 1. 北京邮电大学 人工智能学院
    2. 中国电力科学研究院有限公司
    3. 南瑞集团有限公司
  • 收稿日期:2023-05-19 修回日期:2023-08-13 出版日期:2024-06-30 发布日期:2024-06-13
  • 通讯作者: 高欣 E-mail:xlhhh74@bupt.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(5700-202227226A-1-1-ZN)

Graph convolutional anomaly detection method for multivariate time series with fusion of explicit and implicit associations between sequences

  • Received:2023-05-19 Revised:2023-08-13 Online:2024-06-30 Published:2024-06-13

摘要: 针对现有重构类多维时序异常检测方法对信息物理系统(CPS)中组件间的耦合关系提取能力不足、建模时容易造成信息遗漏的问题,提出一种融合序列间显隐式关联的图卷积多维时序异常检测方法(GCEIAF)。利用改进的余弦相似度公式,提取序列间可以使用距离度量的显式关联关系。设计基于多头自注意力机制的关联关系提取模块,用于可学习地捕捉序列间潜在的隐式依赖关系。整合两种关联关系,将获得的关系融合图和原始时序数据共同输入基于图卷积网络设计的自编码器,进行结合时间和空间依赖性的多维时序重构。根据训练好的模型输出的待测数据重构结果计算CPS的异常分数,进而结合自适应阈值选择算法进行异常检测。四个公开数据集上的实验结果表明,GCEIAF比相关的经典和时效性方法在F1-Score指标上具有明显提升,且该方法可以通过输出关联权重矩阵的方式对异常事件进行解释分析。

关键词: 信息物理系统, 多维时序异常检测, 多头自注意力机制, 图卷积神经网络, 显隐式关联关系提取

Abstract: As the existing reconstruction-based anomaly detection methods cannot extract coupling relationships between components in cyber physical systems (CPS) well and tends to cause information omission, a graph convolutional method based on explicit and implicit associations fusion (GCEIAF) for multivariate time series anomaly detection is proposed. The improved cosine similarity function is used to extract explicit associations that can be measured by distance. An association extraction module based on multi-head self-attention mechanism is designed to capture implicit associations in a learnable way. The two kinds of associations are integrated to build a fusion graph, which is fed into a graph-convolutional autoencoder along with raw data to reconstruct time series combining temporal and spatial dependencies. The anomaly score of CPS can be calculated based on the reconstruction result, and then the anomalies are detected using the adaptive threshold selection algorithm. Experimental results on four public datasets indicate that GCEIAF outperforms the state-of-the-art and latest methods in terms of F1-Score. The experimental results also show that GCEIAF can interpret and analyze abnormal events by outputting the association weight matrix.

Key words: cyber-physical systems, multivariate time series anomaly detection, multi-head self-attention
mechanism,
graph convolutional network, explicit and implicit associations extraction

中图分类号: