北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (3): 69-74.

• • 上一篇    下一篇

面向医学图像分割的傅里叶半监督学习方法

王鹏举1,张晓1,冀振燕1,于瑾2,宋玥增1   

  1. 1. 北京交通大学 软件学院 2. 解放军总医院 第一医学中心神经内科医学部
  • 收稿日期:2023-05-17 修回日期:2023-08-15 出版日期:2024-06-30 发布日期:2024-06-13
  • 通讯作者: 冀振燕 E-mail:zhyji@ bjtu. edu. cn

Fourier semi-supervised learning method for medical image segmentation

#br#   


  • Received:2023-05-17 Revised:2023-08-15 Online:2024-06-30 Published:2024-06-13

摘要: 标注数据稀缺是影响医学图像分割精度的一个挑战性问题,针对此类问题我们提出一种基于傅里叶变换的一致性约束半监督学习方法,在少量带标注数据的情况下,利用无标注数据经由傅里叶变换插值和模型分割的输出与反向操作的输出具有空间一致性的特点,构建针对无标注数据的一致性正则化约束以提升全监督学习的模型性能。在公开数据集ACDC、Synapse和CTLN上的实验结果表明,所提出的FICT方法性能优于基线模型,且可与SOTA半监督学习方法融合以提升其分割性能。

关键词: 医学图像分割, 半监督学习, 傅里叶变换, 一致性正则化约束

Abstract: The scarcity of labeled data is a challenging problem that affects the segmentation accuracy of medical images. Aiming to solve this problem, we propose a semi-supervised learning method based on fourier transform and consistent constraint, In the case of a small amount of annotated data, the output of unannotated data via Fourier transform interpolation and model segmentation is spa-tially consistent with the output of reverse operation, and the consistency regularization constraint for unannotated data is con-structed to improve the model performance of fully supervised learning. The experimental results on public datasets ACDC, Syn-apse and CTLN show that the proposed algorithm is superior to baseline methods and can be integrated with existing SOTA semi-supervised medical image segmentation methods to improve their segmentation performances.

Key words: medical image segmentation, semi-supervised learning, Fourier transformation, consistency regularization constraint

中图分类号: