北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 87-92.

• 论文 • 上一篇    下一篇

基于元双模态学习模型的情感识别

李泽,孙颖,张雪英,周雅茹   

  1. 太原理工大学
  • 收稿日期:2022-09-02 修回日期:2022-12-17 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 孙颖 E-mail:tyutsy@163.com
  • 基金资助:
    山西省自然科学基金面上项目

Emotion recognition based on meta bi-modal learning model

  • Received:2022-09-02 Revised:2022-12-17 Online:2023-10-28 Published:2023-11-03

摘要: 现有的情感识别模型中,存在着单模态表示容易出现歧义、每个人表达情感方式不同以及忽略离散情感与连续情感的问题,针对这些问题,笔者提出元双模态学习(Meta Bi-modal Learning,MBL)模型,实现了单模态连续情感即效价度-激活度-控制度(Valence-Arousal-Dominance,V-A-D)辅助双模态离散情感进行识别,双模态特征融合是采用跨模态自注意力,有效地解决了模态序列数据需要对齐的问题。同时,在辅助任务训练过程中,通过多任务学习中硬参数共享方式,实现V-A-D三维度信息交互。并且学习模型将每个说话人语句作为小样本,提高了模型适应不同说话人的能力,使得模型更加具有泛化能力。实验表明,在语料库IEMOCAP的脚本和对话两组数据集上,MBL模型的情感识别率分别取得了71.24%和69.12%,表现出了良好的性能。

关键词: 双模态, 元学习, 离散情感, 连续情感

Abstract: In the existing emotion recognition models, there are some problems, such as ambiguity in single-mode rep-resentation, different ways of expressing emotion for each person, and ignoring discrete emotion and con-tinuous emotion. To solve these problems, the author proposes meta Bi-modal learning (MBL) model, which realizes single-mode continuous emotion, namely valence activation control (V-A-D), to assist in the recog-nition of dual-mode discrete emotion, Bi-modal feature fusion used cross modal self attention, which effec-tively solved the problem of modal sequence data alignment. At the same time, in the process of auxiliary task training, the V-A-D three-dimensional information interaction was realized through the sharing of hard pa-rameters in multi-task learning. And the learning model taked each speaker's sentence as a small sample, which improved the ability of the model to adapt to different speakers and make the model more generalized. The experiments show that the MBL model has achieved 71.24% and 69.12% emotion recognition rates on the script and dialogue data sets of the corpus IEMOCAP, respectively, showing good performance.

Key words: bi-modal, Meta learning, discrete emotion, continuous emotion

中图分类号: