北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 80-86.

• 论文 • 上一篇    下一篇

基于加权特征向量的无监督波达方向估计算法

冀常鹏1,佐永吉1,贾春霞2,代巍1,史林3   

  1. 1. 辽宁工程技术大学
    2. 日照市自然资源和规划局
    3. 浪潮电子信息股份有限公司
  • 收稿日期:2022-09-20 修回日期:2022-10-16 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 冀常鹏 E-mail:13591999296@163.com
  • 基金资助:
    多用户多信道认知无线电网络的资源分配的研究;压缩感知框架下认知无线电系统功放设计建模与预失真研究

Weighted Eigenvector-based Unsupervised DOA Estimation Algorithm

  • Received:2022-09-20 Revised:2022-10-16 Online:2023-10-28 Published:2023-11-03
  • Contact: 常鹏 冀 E-mail:13591999296@163.com

摘要: 子空间类波达方向DOA估计算法与稀疏重构类DOA估计算法均是基于算法模型驱动的,对于天线阵列位置偏差以及入射信源统计特性偏差等算法模型误差的鲁棒性差。而基于深度学习的DOA估计算法是基于数据驱动的,能够有效地改善算法对于模型误差的鲁棒性。但是,在基于有监督学习策略的DOA估计算法中,需要大量的由已知标准信号源所生成的带标签训练数据集,影响算法对未知信源的估计性能,同时也不利于实际应用。针对上述问题,利用无监督深度学习策略,提出一种基于加权特征向量的无监督DOA估计算法WEUDA。WEUDA算法根据天线阵列接收未知方向随机入射信源多快拍数据协方差矩阵的加权特征向量来建立无标签的训练数据集,使得算法不再依赖于已知的标准信号源,更便于工程实现,同时也提高了网络对未知测试数据集的估计性能。仿真实验表明,相比于子空间类、稀疏重构类以及有监督DOA估计算法,在相同的条件下,WEUDA算法具有更加良好的估计性能。

关键词: 波达方向, 深度学习, 无监督学习策略, 加权特征向量, WEUDA

Abstract: Subspace direction of arrival estimation algorithm and sparse reconstruction DOA estimation algorithm are driven by algorithm model, and have poor robustness to algorithm modelled errors such as antenna array position deviation and incident source statistical characteristic deviation. The DOA estimation algorithm based on deep learning is data-driven and can effectively improve the robustness of the algorithm to model errors. However, in the DOA estimation algorithm based on supervised deep learning strategy, a large number of labeled training data sets generated by known standard signal sources are required, which affects the estimation performance of the algorithm for unknown sources and is not conducive to practical application. To solve the above problems, this paper proposes a weighted eigenvector-based unsupervised DOA estimation algorithm (WEUDA) using unsupervised deep learning strategy. The WEUDA algorithm establishes the unlabeled training data set according to the weighted eigenvector of the multi snapshot data covariance matrix of the random incident source received by the antenna array of the unknown direction, so that the algorithm no longer depends on the known standard signal source, which is more convenient for engineering implementation. At the same time, it also improves the estimation performance of the network on the unknown test data set. Simulation results show that compared with subspace class, sparse reconstruction class and supervised DOA estimation algorithm, the proposed WEUDA algorithm has better estimation performance under the same simulation conditions.

Key words: Direction of Arrival, Deep Learning, Unsupervised Learning Strategy, Weighted Eigenvector, WEUDA

中图分类号: