北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 8-14.

• 论文 • 上一篇    下一篇

基于拉丁方的最优局部修复码构造

王娥,王静,李静辉,杨佳蓉   

  1. 长安大学
  • 收稿日期:2022-08-24 修回日期:2022-11-28 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 王静 E-mail:jingwang@chd.edu.cn;jingwang@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目;陕西省重点研发计划项目

Construction of Optimal Locally Repairable Codes Based on Latin Square

  • Received:2022-08-24 Revised:2022-11-28 Online:2023-10-28 Published:2023-11-03
  • Contact: Wang Jing E-mail:jingwang@chd.edu.cn;jingwang@chd.edu.cn

摘要: 具有 (r,t)-局部性的局部修复码(Locally Repairable Codes, LRCs)可以同时满足分布式存储系统局部修复和并行读取的需求,引起了广泛关注。目前构造的具有 (r,t)-局部性的局部修复码,很少能够同时实现最小距离最优和码率最优,为此,本文提出一种基于拉丁方(Latin Square)的局部修复码的构造算法,将拉丁方中的数字元素按照一定规律替换为二进制元素,再结合矩阵的克罗内克积(Kronecker Product)构造所需的校验矩阵,从而构造信息符号具有 (r,2)-局部性的单校验二元局部修复码(Binary Locally Repairable Codes, BLRCs)。进一步提出基于正交拉丁方(Mutually Orthogonal Latin Squares, MOLS)的局部修复码的构造算法,可构造具有任意可用性 的二元局部修复码。理论分析表明,本文构造的两种局部修复码的最小距离都达到了最优最小距离界,与基于直积码构造的局部修复码和基于阵列LDPC码构造的局部修复码相比,码率更高,且基于拉丁方的局部修复码实现了码率最优。

关键词: 分布式存储系统, 局部修复码, 拉丁方, 正交拉丁方

Abstract: Locally repairable codes (LRCs) with (r,t)-locality could provide the requirements of local repair and parallel reading in distributed storage systems, which has attracted extensive attention. At present, LRCs with (r,t)-locality are seldom able to achieve the optimal minimum distance and optimal code rate at the same time, therefore, this paper proposes a construction algorithm of LRCs based on Latin square. More specifically, the digits in Latin square are replaced by binary numbers according to certain rules, and then the required check matrix can be constructed by the Kronecker product. Thus, binary locally repairable codes (BLRCs) with (r,2)-locality of information symbols are constructed. Furthermore, a construction algorithm of LRCs based on Mutually Orthogonal Latin Squares (MOLS) is proposed, which could construct BLRCs with arbitrary availability. Theoretical analyses show that, both of the two constructed codes satisfies the minimum distance bound, and their code rates are higher than that of the LRCs constructed based on direct product codes and array LDPC codes, and the LRCs based on Latin square achieve the optimal code rate.

Key words: distributed storage systems, locally repairable codes, Latin square, mutually orthogonal Latin squares

中图分类号: