北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (5): 15-21.

• 论文 • 上一篇    下一篇

基于粗糙集改进的 KNN 级联均衡器抑制 LED 非线性研究

贾科军1,王佳宁2,蔺莹1,曹明华3,王惠琴3   

  1. 兰州理工大学
  • 收稿日期:2022-11-09 修回日期:2023-03-27 出版日期:2023-10-28 发布日期:2023-11-03
  • 通讯作者: 贾科军 E-mail:kjjia@lut.edu.cn
  • 基金资助:
    国家自然科学基金;国家自然科学基金;国家自然科学基金;甘肃省自然科学基金;兰州理工大学博士科研启动经费

Design of KNN cascade equalizer improved by rough set theory and LED nonlinearity suppression study

  • Received:2022-11-09 Revised:2023-03-27 Online:2023-10-28 Published:2023-11-03

摘要: 针对发光二极管(LED)的非线性响应导致可见光通信(VLC)性能严重下降的问题,提出基于粗糙集理论改进的K最近邻(KNN)算法,进一步,将其与最小均方(LMS)结合设计了级联均衡器。首先,根据接收端星座点分布特征,将训练集数据空间划分为不同的区域,对不同区域采用不同的分类策略,减小了传统KNN算法的计算复杂度。然后,提出LMS与改进KNN级联均衡器,第一级LMS算法可降低样本点的弥散度,为提高第二级改进KNN的分类准确性和减小计算复杂度提供了条件。最后,采用蒙特卡罗误码率仿真,结果表明改进KNN算法复杂度约是传统KNN算法的1/9,且不牺牲分类准确性;同时,提出的LMS与改进KNN级联均衡器能显著改善误码率性能。

关键词: 可见光通信, LED非线性, 粗糙集理论, K最近邻算法, LMS算法

Abstract: To address the problem that the nonlinear response of light-emitting diodes (LEDs) leads to serious degradation of visible light communication (VLC) performance, a K-nearest neighbor (KNN) algorithm improved based on rough set theory is proposed, and further, a cascaded equalizer is designed by combining it with least mean square (LMS). First, the training set data space is divided into different regions according to the distribution characteristics of constellation points at the receiver side, and different classification strategies are used for different regions to reduce the computational complexity of the traditional KNN algorithm. Then, the LMS and improved KNN cascade equalizer are proposed, and the first stage LMS algorithm can reduce the dispersion of sample points, which provides conditions to improve the classification accuracy and reduce the computational complexity of the second stage improved KNN. Finally, Monte Carlo BER simulation is used, and the results show that the complexity of the improved KNN algorithm is about 1/9 of the traditional KNN algorithm without sacrificing the classification accuracy; meanwhile, the proposed LMS with improved KNN cascade equalizer can significantly improve the BER performance.

Key words: visible light communication, LED nonlinearity, rough set theory, K-nearest neighbor algorithm, LMS algorithm

中图分类号: