北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (3): 13-18.

• 人工智能使能网络通信 • 上一篇    下一篇

联合BP神经网络与基扩展模型的信道预测算法

杨丽花1,聂倩1,呼博1,江婷2   

  1. 1. 南京邮电大学 江苏省无线通信重点实验室 2. 南京航空航天大学 电子信息工程学院
  • 收稿日期:2021-12-01 修回日期:2022-05-30 出版日期:2023-06-28 发布日期:2023-06-05
  • 通讯作者: 杨丽花 E-mail:yanglh@njupt.edu.cn
  • 基金资助:

    江苏省科技项目(BK20191378)

Channel Prediction Method Joint BP Neural Network with Basis Expansion Model

YANG Lihua1, NIE Qian1, HU Bo1, JIANG Ting2   

  • Received:2021-12-01 Revised:2022-05-30 Online:2023-06-28 Published:2023-06-05

摘要:

针对高速移动的多输入多输出正交频分复用系统,提出了一种低复杂度的联合反向传播(BP)神经网络与基扩展模型的时变信道预测算法。 为了降低计算复杂度,采用基扩展模型对信道进行建模,并通过对信道基系数进行线下训练与线上预测以获取未来时刻的信道信息。在线下训练中,首先基于历史接收的导频信号获取信道的基系数估计;然后构造训练样本,并将其送入 BP 神经网络训练中,以获取信道预测网络模型。在线上预测时,基于训练得到网络模型与历史基系数估计,从而获取未来时刻的时域信道。仿真实验结果表明,所提算法的计算复杂度较低,且预测精度较高,适用于未来高速移动环境下时变信道信息的高效获取。

关键词: 高速移动, 基扩展模型, 反向传播神经网络, 时变信道预测

Abstract:

For high-speed mobile multiple-input multiple-output orthogonal frequency division multiplexing system, a low-complexity time-varying channel prediction method joint the back propagation(BP) neural network with basis expansion model is proposed. To reduce the computational complexity, the basis expansion model is employed to model the time varying channel, and the channel information at a future time is obtained by the offline training and online prediction of the channel base coefficient. During offline training, the proposed method first acquires the channel base coefficient by the received pilots. Then to obtain the channel prediction network model, the training sample is constructed and sent into the BP neural network for training. During the online prediction, based on the network model and historical base coefficient estimation obtained by the training, the proposed method can obtain the time domain channel at the future time. The simulation results show that the proposed method has lower computational complexity and higher prediction accuracy than the existing methods, which is suitable for the efficient acquisition of time-varying channel information in the future high-speed mobile environment.


Key words: high speed mobile, basis expansion model, back propagation neural network, time-varying channel prediction

中图分类号: