摘要:
针对高速移动的多输入多输出正交频分复用系统,提出了一种低复杂度的联合反向传播(BP)神经网络与基扩展模型的时变信道预测算法。 为了降低计算复杂度,采用基扩展模型对信道进行建模,并通过对信道基系数进行线下训练与线上预测以获取未来时刻的信道信息。在线下训练中,首先基于历史接收的导频信号获取信道的基系数估计;然后构造训练样本,并将其送入 BP 神经网络训练中,以获取信道预测网络模型。在线上预测时,基于训练得到网络模型与历史基系数估计,从而获取未来时刻的时域信道。仿真实验结果表明,所提算法的计算复杂度较低,且预测精度较高,适用于未来高速移动环境下时变信道信息的高效获取。
中图分类号: