摘要: 针对当前非协作通信中MIMO-OFDM信号信噪比盲估计与子载波的调制识别研究仅集中在单个任务中的问题,提出了一种将深度神经网络与多任务学习(MTL)框架相结合从而同时完成信噪比盲估计与调制识别的算法。首先利用特征值矩阵联合近似对角化算法(JADE)恢复发送信号,并提取恢复信号的同向正交(I/Q)分量作为浅层特征;然后搭建基于一维卷积神经网络(CNN)的多任务学习模型,通过联合训练信噪比(SNR)估计和调制识别两个任务,实现优势互补。仿真结果表明,所提算法可获得比单任务学习(STL)更优的性能,当信噪比为-10dB时,信噪比估计的均方误差降低了66.21%,调制识别精度提高了4.75%。另外,多任务学习模型在信噪比大于-1dB时,信噪比估计的均方误差小于0.1;信噪比为3dB时,调制识别的精度可达到100%。
中图分类号: