北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (6): 98-104.

• 论文 • 上一篇    下一篇

基于多任务学习的MIMO-OFDM信号联合信噪比估计与调制识别

张天骐1,2,汪锐2,安泽亮2,方竹3,王雪怡2   

  1. 1.
    2. 重庆邮电大学, 信号与信息处理重庆市重点实验室
    3. 重庆邮电大学
  • 收稿日期:2022-03-09 修回日期:2022-07-30 出版日期:2022-12-28 发布日期:2022-11-24
  • 通讯作者: 汪锐 E-mail:1565060642@qq.com
  • 基金资助:
    国家自然科学基金项目;信号与信息处理重庆市市级重点实验室建设项目;重庆市自然基金项目;重庆市教育委员会科研项目

Joint SNR estimation and modulation recognition of MIMO-OFDM signals based on multitask learning

  • Received:2022-03-09 Revised:2022-07-30 Online:2022-12-28 Published:2022-11-24
  • Contact: Rui -WANG E-mail:1565060642@qq.com

摘要: 针对当前非协作通信中MIMO-OFDM信号信噪比盲估计与子载波的调制识别研究仅集中在单个任务中的问题,提出了一种将深度神经网络与多任务学习(MTL)框架相结合从而同时完成信噪比盲估计与调制识别的算法。首先利用特征值矩阵联合近似对角化算法(JADE)恢复发送信号,并提取恢复信号的同向正交(I/Q)分量作为浅层特征;然后搭建基于一维卷积神经网络(CNN)的多任务学习模型,通过联合训练信噪比(SNR)估计和调制识别两个任务,实现优势互补。仿真结果表明,所提算法可获得比单任务学习(STL)更优的性能,当信噪比为-10dB时,信噪比估计的均方误差降低了66.21%,调制识别精度提高了4.75%。另外,多任务学习模型在信噪比大于-1dB时,信噪比估计的均方误差小于0.1;信噪比为3dB时,调制识别的精度可达到100%。

关键词: 多输入多输出信号, 信噪比估计, 调制识别, 神经网络, 多任务学习

Abstract: Aiming at the problem that the current research on Blind SNR estimation and subcarrier modulation recognition of MIMO-OFDM signal in non cooperative communication only focuses on a single task, an algorithm combining deep neural network and multi task learning (MTL) framework is proposed to complete blind SNR estimation and modulation recognition at the same time. Firstly, the joint approximate diagonalization algorithm (JADE) of eigenvalue matrix is used to recover the transmitted signal, and the codirectional orthogonal (I/Q) component of the recovered signal is extracted as the shallow feature; Then, a multi task learning model based on one-dimensional convolutional neural network (CNN) is built to realize complementary advantages through joint training of signal-to-noise ratio (SNR) estimation and modulation recognition. Simulation results show that the proposed algorithm can achieve better performance than single task learning (STL). When the signal-to-noise ratio is - 10dB, the mean square error of signal-to-noise ratio estimation is reduced by 66.21% and the modulation recognition accuracy is improved by 4.75%. In addition, when the signal-to-noise ratio is greater than - 1dB, the mean square error of signal-to-noise ratio estimation is less than 0.1; When the signal-to-noise ratio is 3dB, the accuracy of modulation recognition can reach 100%.

Key words: Multiple Input Multiple Output (MIMO) signals, SNR estimation, Modulation identification, Neural network, Multi task learning

中图分类号: