北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (5): 125-129,136.doi: 10.13190/j.jbupt.2019-192

• 研究报告 • 上一篇    下一篇

基于映射曲线的自适应莱维鲸鱼无线定位算法

余修武1,2, 李莹1, 刘永1,2, 肖人榕1, 余昊1   

  1. 1. 南华大学 资源环境与安全工程学院, 衡阳 421001;
    2. 湖南省铀尾矿库退役治理工程技术研究中心, 衡阳 421001
  • 收稿日期:2019-09-19 发布日期:2021-03-11
  • 通讯作者: 李莹(1996-),女,硕士生,E-mail:614151536@qq.com. E-mail:614151536@qq.com
  • 作者简介:余修武(1976-),男,教授,硕士生导师.
  • 基金资助:
    国家自然科学基金项目(11875164);湖南省重点研发计划项目(2018SK2055)

Wireless Localization Algorithm of Adaptive Levy Whale Based on Mapping Curve

YU Xiu-wu1,2, LI Ying1, LIU Yong1,2, XIAO Ren-rong1, YU Hao1   

  1. 1. School of Resource&Environment and Safety Engineering, University of South China, Hengyang 421001, China;
    2. Hunan Province Engineering Research Center of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang 421001, China
  • Received:2019-09-19 Published:2021-03-11

摘要: 针对多维定标(MDS-MAP)算法计算效率低且定位精度不高的问题,提出了一种基于映射曲线的自适应莱维鲸鱼无线定位(AWL-MC)算法.采用映射曲线距离分析方法对待定位节点进行粗略相对定位,以提高节点的计算效率;再通过线性变换将相对坐标转换成绝对坐标;最后采用自适应莱维飞行鲸鱼优化算法对待定位节点坐标进行全局和局部搜索寻优处理,避免产生局部最优解,提高了定位精度.仿真结果表明,AWL-MC算法相比MDS-MAP算法的定位精度改进率为66.42%,计算效率提高了52.57%,相比多维定标扩展卡尔曼滤波的定位精度改进率为57.80%,计算效率提高了66.01%.

关键词: 无线传感器网络, 定位算法, 映射曲线, 莱维飞行鲸鱼算法

Abstract: Aiming at the problems of low calculation efficiency and low positioning accuracy of the multidimensional scaling map (MDS-MAP) algorithm, a wireless localization algorithm of adaptive Levy whale based on mapping curve (AWL-MC) is proposed. The mapping curve distance analysis method is used to make rough relative positioning of the localization nodes, so as to improve the calculation efficiency of nodes. Then the relative coordinates are converted into absolute coordinates by linear transformation. Finally, the adaptive Levy flight whale optimization algorithm is adopted to perform global and local search optimization processing for the coordinates of positioning nodes, so as to avoid local optimal solution and improve positioning accuracy. Simulations show that compared with MDS-MAP, AWL-MC algorithm has a 66.42% improvement rate in positioning accuracy and a 52.57% improvement in calculation efficiency. Compared with the multidimensional scaling extended Kalman filter, AWL-MC algorithm has a 57.80% improvement rate in positioning accuracy and a 66.01% improvement in calculation efficiency.

Key words: wireless sensor network, localization algorithm, mapping curve, Levy flight whale algorithm

中图分类号: