[1] Bendlin R, Damgard I. Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems[C]//Theory of Cryptography Conference. Heidelberg:Springer, 2010:201-218. [2] Regev O. On lattices, learning with errors, random linear codes, and cryptography[C]//Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing. New York:ACM, 2005:84-93. [3] Frederiksen T. A multi-bit threshold variant of Regev's LWE-based cryptosystem[J/OL]. Cryptology ePrint Archive, 2011:1[2019-11-18]. http://daimi.au.dk/~jot2re/lwe/resources/report2.pdf. [4] Li Zengpeng, Ma Chunguang, Wang Ding. Leakage resilient leveled FHE on multiple bit message[J]. IEEE Transactions on Big Data, 2017:7. [5] Brakerski Z, Halevi S, Polychroniadou A. Four round secure computation without setup[J/OL]. Cryptology e Print Archive, 2017:386[2019-10-12]. http://eprint.iacr.org/2017/386. [6] Brakerski Z, Gentry C, Halevi S. Packed ciphertexts in LWE-based homomorphic encryption[C]//16th International Conference on Practice and Theory in Public-Key Cryptography. Heidelberg:Springer, 2013:1-13. [7] Boneh D, Gennaro R, Goldfeder S, et al. Threshold cryptosystems from threshold fully homomorphic encryption[C]//38th Annual International Cryptology Conference. Heidelberg:Springer, 2018:565-596. [8] Boneh D, Gennaro R, Goldfeder S, et al. A lattice-based universal thresholdizer for cryptographic systems[J/OL]. IACR Cryptology ePrint Archive, 2017:251[2019-10-21]. https://eprint.iacr.org/2017/251.pdf. [9] Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[C]//40th Annual ACM Symposium on Theory of Computing. New York:ACM, 2008:197-206. [10] Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11):612-613. [11] Canetti R. Universally composable security:a new paradigm for cryptographic protocols[C]//42nd IEEE Symposium on Foundations of Computer Science. Los Alamitos:IEEE Computer Society, 2001:136-145. [12] Peikert C, Vaikuntanathan V, Waters B. A framework for efficient and composable oblivious transfer[C]//28th Annual Intermational Cryptology Conference on Cryptology:Advances in Cryptology. Heidelberg:Spinger, 2008:554-571. [13] Li Zengpeng, Wang Jiuru, Zhang Wenyin. Revisiting post-quantum hash proof systems over lattices for internet of thing authentications[J]. Journal of Ambient Intelligence and Humanized Computing, 2019:10. |