北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (4): 48-53,75.doi: 10.13190/j.jbupt.2019-208

• 论文 • 上一篇    下一篇

传感云中基于边缘计算的差分数据保护方法

梅雅欣, 沈雪微, 赵丹, 王田   

  1. 华侨大学 计算机科学与技术学院, 厦门 361021
  • 收稿日期:2019-10-18 发布日期:2020-08-15
  • 通讯作者: 王田(1982-),男,教授,E-mail:cs_tianwang@163.com. E-mail:cs_tianwang@163.com
  • 作者简介:梅雅欣(1996-),女,硕士生.
  • 基金资助:
    国家自然科学基金面上项目(61872154);福建省社会科学规划一般项目(FJ2018B038)

An Edge-Based Differential Method for Data Protection in Sensor-Cloud

MEI Ya-xin, SHEN Xue-wei, ZHAO Dan, WANG Tian   

  1. School of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
  • Received:2019-10-18 Published:2020-08-15

摘要: 为了改进存储机制,以提供一个通用的隐私保护服务,提出了一种基于边缘的数据保护模型,将无线传感器网络收集的原始数据交由边缘服务器,并利用隐私计算算法进行差分处理.少量核心数据存储在边缘服务器和本地服务器上,其他数据传输到云端存储.基于该模型,即使存储在云中的数据被泄露,原始数据也无法被恢复,数据的隐私权得以保证;采用差分存储方法,减少了发送到云端的数据,降低了通信成本和存储成本.理论分析和大量实验结果证实了该方法有效.

关键词: 隐私保护, 边缘计算, 差分处理

Abstract: To improve the storage mechanism to provide a general privacy protection service, a data protection model based on edge computing is presented. The original data collected by wireless sensor networks is differentiated by privacy computing algorithm on edge servers. A small amount of core data is stored on edge servers and local servers,while other data is transferred to the cloud for storage. Based on the model,even if the data stored in the cloud is leaked,the original data cannot be recovered,so the privacy of the data can be ensured. The differential storage method reduces the data sent to the cloud and decreases the communication cost and storage cost. Both theoretical analyses and a large number of experiments have proved the effectiveness of the proposed method.

Key words: privacy protection, edge computing, differential processing

中图分类号: