北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (4): 39-47.doi: 10.13190/j.jbupt.2019-216

• 论文 • 上一篇    下一篇

一种面向定点轨迹数据的行程识别方法

张宽, 赵卓峰, 郭炜强   

  1. 北方工业大学 大规模流数据集成与分析技术北京市重点实验室, 北京 100144
  • 收稿日期:2019-10-12 发布日期:2020-08-15
  • 通讯作者: 赵卓峰(1977-),男,研究员,博士生导师,E-mail:edzhao@ncut.edu.cn. E-mail:edzhao@ncut.edu.cn
  • 作者简介:张宽(1994-),男,硕士生.
  • 基金资助:
    国家自然科学基金项目(61702014);北京市自然科学基金项目(4202021,4192020)

Travel Recognition Method for Fixed-Point Trajectory Data

ZHANG Kuan, ZHAO Zhuo-feng, GUO Wei-qiang   

  1. Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data, North China University of Technology, Beijing 100144, China
  • Received:2019-10-12 Published:2020-08-15

摘要: 为了对长周期定点轨迹数据进行行程识别,提出了一种基于动态阈值的定点轨迹数据行程识别方法.首先,采用聚类方法确定与阈值相关的时空多粒度参数;其次,根据参数对历史记录进行统计,计算参数对应的阈值;利用时空相关参数获取对应阈值,对轨迹进行分段,进而实现行程识别.基于真实的城市交通卡口数据的实验结果表明,使用时空相关的动态阈值方法对定点轨迹数据进行行程识别在准确率和覆盖率上都要优于传统基于固定和单一阈值的方法.

关键词: 定点轨迹数据, 行程识别, 轨迹分段

Abstract: To satisfy the requirements of long-periodic fixed-point trajectory travel recognition,a dynamic threshold travel recognition method for fixed point trajectory data is proposed. At first,use hierarchical clustering to determine the spatial-temporal multiple granularity parameters which relate to the threshold. Then count historical records according to parameters to calculate the threshold corresponding to each parameter. Last,execute trajectory segmentation process with spatial-temporal threshold to get the precise travel recognition result. Experiment based on fixed-point trajectory data from real world city shows that using spatial-temporal dynamic threshold method to recognize travel in fixed point trajectory data is superior to the traditional stable and single threshold method on accuracy and coverage.

Key words: fixed-point trajectory data, travel recognition, trajectory segmentation

中图分类号: