北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (3): 131-137.doi: 10.13190/j.jbupt.2019-161

• 研究报告 • 上一篇    下一篇

基于改进萤火虫优化神经网络的WSNs分簇路由协议

戴剑勇1,2, 邓先红1, 王彬1, 汪恒浩1   

  1. 1. 南华大学 资源环境与安全工程学院, 衡阳 421001;
    2. 湖南省铀尾矿库退役治理技术工程技术研究中心, 衡阳 421001
  • 收稿日期:2019-07-14 出版日期:2020-06-28 发布日期:2020-06-24
  • 作者简介:戴剑勇(1969-),男,教授,博士生导师,E-mail:daijy13@163.com.
  • 基金资助:
    国家自然科学基金项目(51174116);湖南省教育厅重点资助科研项目(18A235);铀矿冶放射性控制技术湖南省工程研究中心、湖南省铀尾矿库退役治理技术工程技术研究中心联合开放课题重点项目(2018YKZX1001)

Clustering Routing Protocol for WSNs Based on Neural Network Optimization by Improved Firefly Algorithm

DAI Jian-yong1,2, DENG Xian-hong1, WANG Bin1, WANG Heng-hao1   

  1. 1. School of Resources, Environment and Safety Engineering, University of South China, Hengyang 421001, China;
    2. Hunan Province Engineering Technology Research Center of Uranium Tailings Treatment Technology, Hengyang 421001, China
  • Received:2019-07-14 Online:2020-06-28 Published:2020-06-24
  • Supported by:
     

摘要: 针对无线传感器网络中能耗不均衡问题,提出了一种基于改进萤火虫算法优化反向传播神经网络的非均匀分簇路由协议.通过在萤火虫算法中引进权重因子并增加4个评价指标,来平衡簇内负载和减少簇间的通信距离.结合BP神经网络,优化路径选择和簇首选举方式,达到最佳成簇效果.仿真结果表明,改进萤火虫算法优化BP神经网络的非均匀分簇路由协议能有效延长网络生命周期,节省能量,并均衡能耗.

关键词: BP神经网络, 萤火虫算法, 非均匀分簇

Abstract: Aiming at solving the problem of uneven energy consumption in wireless sensor networks (WSNs),an uneven clustering routing protocol based on the improved firefly algorithm optimized back propagation(BP) neural network (IFABPUC) is proposed. To balance the intra-cluster load and reduce the inter-cluster communication distances,a weighting factor which takes into account four more evaluation indexes than the conventional firefly algorithm is embedded in the improved firefly algorithm. To achieve the best clustering, BP neural network is combined to optimize the way to path selection and cluster head election. Simulations show that IFABPUC can effectively extend the lifecycle of networks,save energy and balance energy consumption.

Key words: back propagation neural network, firefly algorithm, uneven clustering

中图分类号: