[1] 郑漳华, 艾芊. 微电网的研究现状及在我国的应用前景[J]. 电网技术, 2008, 32(16):27-31. Zheng Zhanghua, Ai Qian. Research status and application prospect of micro power grid in China[J]. Power Grid Technology, 2008, 32(16):27-31.
[2] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2):10-14. Wang Chengshan, Li Peng. Development and challenges of distributed generation, micro grid and intelligent distribution network[J]. Power System Automation, 2010, 34(2):10-14.
[3] 鞠平, 周孝信, 陈维江, 等. "智能电网+"研究综述[J]. 电力自动化设备, 2018, 38(5):2-11. Ju Ping, Zhou Xiaoxin, Chen Weijiang, et al. Research review of "smart grid +"[J]. Electric Power Automation Equipment, 2018, 38(5):2-11.
[4] 张素香. 智能小区的商业智能[J]. 北京邮电大学学报, 2012, 35(5):94-97. Zhang Suxiang. Business intelligence of intelligent community[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(5):94-97.
[5] Thomas Strasser, Filip Andrén, Johannes Kathan, et al. A review of architectures and concepts for intelligence in future electric energy systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4):2424-2438.
[6] Roberts B. Capturing grid power[J]. IEEE Power and Energy Magazine, 2009, 7(4):32-41.
[7] 徐丰. 微电网建模及其控制策略研究[D]. 南京:南京理工大学, 2013.
[8] 周围, 韩礼冬, 李钢, 等. 基于PSCAD/EMTDC的微电网永磁直驱风力发电系统建模与仿真研究[J]. 电气技术, 2016, 17(2):52-57. Zhou Wei, Han Lidong, Li Gang, et al. Modeling and simulation of PSCAD/EMTDC based micro grid permanent magnet direct drive wind power generation system[J]. Electrical Technology, 2016, 17(2):52-57.
[9] 刘国静, 韩学山, 王尚, 等. 基于强化学习方法的风储合作决策[J]. 电网技术, 2016, 40(9):2729-2736. Liu Guojing, Han Xueshan, Wang Shang, et al. Wind storage cooperative decision-making based on reinforcement learning[J]. Power Grid Technology, 2016, 40(9):2729-2736.
[10] 钟伟锋. 智能电网中V2G系统能量管理及应用研究[D]. 广东:广东工业大学, 2016.
[11] 周文辉, 钟伟锋, 吴杰, 等. 面向智能电网负荷调节的自适应储能系统控制[J]. 北京邮电大学学报, 2017, 40(1):32-35. Zhou Wenhui, Zhong Weifeng, Wu Jie, et al. Adaptive energy storage system control for smart grid load regulation[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1):32-35.
[12] Wei C, Zhang Z, Qiao W, et al. An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems[J]. IEEE Transactions on Power Electronics, 2016, 31(11):7837-7848.
[13] Etemad S, Mozayani N. Using reinforcement learning to make smart energy storage sources in microgrid[C]//2015 30th International Power System Conference (PSC). Tehran:[s. n.], 2015:345-350.
[14] Wu Jingda, He Hongwen, Peng Jiankun, et al. Continuous reinforcement Jingda learning of energy management with deep Q network for a power split hybrid electric bus[J]. Applied Energy, 2018, 222(15):799-811. |