北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (1): 28-34.doi: 10.13190/j.jbupt.2019-040

• 论文 • 上一篇    下一篇

基于强化学习的微电网能源调度策略及优化

刘金华1, 柯钟鸣1,2, 周文辉1   

  1. 1. 电子科技大学 中山学院, 中山 528402;
    2. 电子科技大学 自动化工程学院, 成都 611731
  • 收稿日期:2019-03-18 出版日期:2020-02-28 发布日期:2020-03-27
  • 作者简介:刘金华(1982-),女,副教授,E-mail:29565575@qq.com.
  • 基金资助:
    国家自然科学基金项目(61773126)

Reinforcement Learning Based Energy Dispatch Strategy and Control Optimization of Microgrid

LIU Jin-hua1, KE Zhong-ming1,2, ZHOU Wen-hui1   

  1. 1. Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China;
    2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2019-03-18 Online:2020-02-28 Published:2020-03-27
  • Supported by:
     

摘要: 针对微电网中能源调度的经济效益、充电效率优化、系统负荷波动以及碳排放问题,提出将强化学习运用到微电网调度中,通过建立一个完整的微电网模型,使强化学习在不断迭代过程中得到最优策略,同时达到经济效益趋向最大化、充电功率相对稳定、系统负荷波动减少、碳排放量达到最小化这4个联合优化目标.仿真结果表明,采用的控制策略既能很好地实现经济效益最大化收敛、碳排放量最小化收敛,同时又能使得充电功率相对稳定,微电网的负荷也能减少,极大地提高了系统的稳定性.

关键词: 微电网, 经济效益, 系统优化, 碳排放, 强化学习

Abstract: Aiming at the economic benefit problem, charging efficiency optimization problem, system load fluctuation problem and carbon emissions problem of energy scheduling in microgrid, application of reinforcement learning to energy scheduling in microgrid is presented. By establishing a complete microgrid model and using reinforcement learning to obtain the optimal strategy in the continuous iterative process, economic benefits tended to be maximized, charging power is relatively stable, load fluctuation of the system is reduced, and carbon emissions is tended minimized. These four joint optimization objectives are reached. Simulations show that the control strategy used in this system can not only maximize the convergence of economic benefits and minimize carbon emissions, but also make the charging power relatively stable, and reduce the load of microgrid. The stability of this system will be improved greatly.

Key words: microgrid, economic benefits, system optimization, carbon emissions, reinforcement learning

中图分类号: