[1] Chang Zhong, Sun Yan, Wu Tinyu, et al. Scratch analysis tool(SAT):a modern scratch project analysis tool based on ANTLR to assess computational thinking skills[C]//2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC). Limassol:IEEE Press, 2018:950-955.
[2] Techapalokul P. Sniffing through millions of blocks for bad smells[C]//Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education-SIGCSE'17. Washington:ACM Press, 2017:781-782.
[3] Aivaloglou E, Hermans F, Moreno-Leon J, et al. A dataset of scratch programs:scraped, shaped and scored[C]//2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). Buenos Aires:IEEE Press, 2017:511-514.
[4] Moreno-Leon J, Robles G, Roman-Gonzalez M. Towards data-driven learning paths to develop computational thinking withscratch[J]. IEEE Transactions on Emerging Topics in Computing, 2017, 14(6):185-197.
[5] Szymański P, Kajdanowicz T, Kersting K. How is a data-driven approach better than random choice in label space division for multi-label classification?[J]. Entropy, 2016, 18(8):282-305.
[6] Zhang Minling, Zhou Zhihua. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
[7] Zhang Yahong, Li Yujian, Cai Zhi. Correlation-based pruning of dependent binary relevance models for multi-label classification[C]//2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). Beijing, China:IEEE Press, 2015:399-404.
[8] Lena T, Lior R, Bracha S. Identification of label dependencies for multilabel classification[C]//Proceedings of the 2nd International Workshop on Learning from Multi-Label Data. Dublin, Ireland:IEEE, 2010:53-60.
[9] Tsoumakas G, Katakis I, Vlahavas I. Random k-labelsets for multilabel classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7):1079-1089.
[10] Charte F, Rivera A, del Jesus M J, et al. Improving multi-label classifiers via label reduction with association rules[M]//Lecture Notes in Computer Science. Berlin, Heidelberg:Springer Berlin Heidelberg, 2012:188-199.
[11] Liu Caizhi, Sheng Yanxiu, Wei Zhiqiang, et al. Research of text classification based on improved TF-IDF algorithm[C]//2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE). Lanzhou, China:IEEE Press, 2018:218-222.
[12] Moreno-Leon J, Robles G, Roman-Gonzalez M. Comparing computational thinking development assessment scores with software complexity metrics[C]//2016 IEEE Global Engineering Education Conference (EDUCON). Abu Dhabi, UAE:IEEE Press, 2016:1040-1045.
[13] Wang Zezhong, Cao Shuo. A power load association rules mining method based on improved FP-growth algorithm[C]//2018 China International Conference on Electricity Distribution (CICED). Tianjin, China:IEEE Press, 2018:2833-2837.
[14] Gibaja E, Ventura S. Atutorial on multilabel learning[J]. ACM Computing Surveys, 2015, 47(3):1-38. |