北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (3): 43-50.doi: 10.13190/j.jbupt.2018-221

• 论文 • 上一篇    下一篇

基于智能手机感知的人体运动状态深度识别

殷晓玲1,2, 夏启寿1,2, 陈晓江1, 何娟1, 陈峰1   

  1. 1. 西北大学 信息科学与技术学院, 西安 710127;
    2. 池州学院 数学与计算机学院, 安徽 247000
  • 收稿日期:2018-09-09 出版日期:2019-06-28 发布日期:2019-06-20
  • 作者简介:殷晓玲(1975-),女,副教授,E-mail:xqs@czu.edu.cn.
  • 基金资助:
    国家自然科学基金青年基金项目(61602382);陕西省创新团队基金项目(2018TD-026);安徽省高校自然科学研究资助项目(KJ2015A290,KJ2017A579)

In-Depth Recognition of Human Motion States Based on Smart Phone Perception

YIN Xiao-ling1,2, XIA Qi-shou1,2, CHEN Xiao-jiang1, HE Juan1, CHEN Feng1   

  1. 1. School of Information Science and Technology, Northwest University, Xi'an 710127, China;
    2. College of Mathematics and Computer Science, Chizhou University, Chizhou 247000, China
  • Received:2018-09-09 Online:2019-06-28 Published:2019-06-20

摘要: 为提高智能手机对人体运动状态识别的准确率,提出一种基于并联卷积神经网络(PCNN)的深度识别方法.首先,使用三维数据矩阵规范传感器数据输入格式;其次,使用2个PCNN分别对人体运动的加速度传感器和陀螺仪数据进行卷积和池化操作,实现部分权重共享;最后,在全连接层对两组卷积神经网络进行合并,并使用softmax函数对人体运动状态进行分类.实验结果表明,采用该方法可以从传感器原始数据中提取人体运动状态的深层特征,与传统的机器学习方法相比较,提高了运动状态的识别率.

关键词: 运动状态, 深度识别, 智能手机, 并联卷积神经网络

Abstract: In order to improve the accuracy of recognition of human motion states by smart phones, an in-depth recognition method based on parallel convolution neural network (PCNN) is proposed. Firstly, the sensor data input format is standardized by using 3D data matrix. Secondly, two PCNNs are used to carry out convolution and pool operation to the acceleration sensor and gyroscope data of human body motion respectively, realizing partial weight sharing. Finally, the two PCNNs are merged in the full-connected layer, and the softmax function is used to classify the human motion states. Experiments show that this method can extract the deep features of human motion states from the original data of the sensor, which can improve the recognition rate of the motion state by comparing with the traditional machine learning method.

Key words: motion states, in-depth recognition, smart phones, parallel convolution neural network

中图分类号: