[1] Zampoglou M, Papadopoulos S, Kompatsiaris Y. Large-scale evaluation of splicing localization algorithms for web images[J]. Multimedia Tools and Applications, 2017, 76(4):4801-4834.
[2] Liu Bo, Pun C M. Locating splicing forgery by fully convolutional networks and conditional random field[J]. Signal Processing:Image Communication, 2018, 66(4):103-112.
[3] Lyu Siwei, Pan Xunyu, Zhang Xing. Exposing region splicing forgeries with blind local noise estimation[J]. International Journal of Computer Vision, 2014, 110(2):202-221.
[4] Cozzolino D, Poggi G, Verdoliva L. Splicebuster:a new blind image splicing detector[C]//2015 IEEE International Workshop on Information Forensics and Security (WIFS). New York:IEEE, 2015:1-6.
[5] Binanchi T, Piva A. Detection of nonaligned double JPEG compression based on integer periodicity maps[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2):842-848.
[6] Bianchi T, Piva A. Image forgery localization via block-grained analysis of JPEG artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):1003-1017.
[7] Amerini I, Becarelli R, Caldelli R, et al. Splicing forgeries localization through the use of first digit features[C]//2014 IEEE International Workshop on Information Forensics and Security (WIFS). New York:IEEE, 2014:143-148.
[8] Zhang Ying, Goh J, Win L L, et al. Image region forgery detection:a deep learning approach[C]//Proceedings of the Singapore Cyber-Security Conference (SG-CRC). Amsterdam:IOS, 2016:1-11.
[9] Bayar B, Stamm M C. A deep learning approach to universal image manipulation detection using a new convolutional layer[C]//Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. New York:ACM, 2016:5-10.
[10] Bianchi T, Rosa A D, Piva A. Improved DCT coefficient analysis for forgery localization in JPEG images[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. New York:IEEE, 2011:2444-2447.
[11] Wang Wei, Dong Jing, Tan Tieniu. Exploring DCT coefficient quantization effects for local tampering detection[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(10):1653-1666.
[12] Chierchia G, Poggi G, Sansone C, et al. A Bayesian-MRF approach for PRNU-based image forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(4):554-567.
[13] Pun C M, Liu Bo, Yuan Xiaochen. Multi-scale noise estimation for image splicing forgery detection[J]. Journal of Visual Communication and Image Representation, 2016, 38(3):195-206.
[14] 李叶舟, 孙晓婷, 牛少彰, 等. 噪声特征与EXIF信息相关性的图像篡改鉴定[J]. 北京邮电大学学报, 2014, 37(1):6-10. Li Yezhou, Sun Xiaoting, Niu Shaozhang, et al. Detecting forgeries by correlation between image noise features and EXIF parameters[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(1):6-10.
[15] Ferrara P, Bianchi T, Rosa A D, et al. Image forgery localization via fine-grained analysis of CFA artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5):1566-1577.
[16] Chen Jiansheng, Kang Xiangui, Liu Ye, et al. Median filtering forensics based on convolutional neural networks[J]. IEEE Signal Processing Letters, 2015, 22(11):1849-1853.
[17] Bondi L, Lameri S, Guera D, et al. Tampering detection and localization through clustering of camera-based CNN features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York:IEEE, 2017:1855-1864.
[18] Rao Yuan, Ni Jiangqun. A deep learning approach to detection of splicing and copy-move forgeries in images[C]//IEEE International Workshop on Information Forensics and Security. New York:IEEE, 2016:1-6.
[19] Salloum R, Ren Yuzhuo, Kuo C C J. Image splicing localization using a multi-task fully convolutional network (MFCN)[J]. Journal of Visual Communication and Image Representation, 2018, 51(2):201-209.
[20] Chen L C, Zhu Yukun, Papapndreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin:Springer, 2018:801-818. |