[1] Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1):9.
[2] Borth D, Ji R, Chen T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//ACM International Conference on Multimedia. New York:ACM, 2013:223-232.
[3] Jou B, Chen T, Pappas N, et al. Visual affect around the world:A large-scale multilingual visual sentiment ontology[C]//ACM International Conference on Multimedia. New York:ACM, 2015:159-168.
[4] 李钊, 卢苇, 邢薇薇, 等. CNN视觉特征的图像检索[J]. 北京邮电大学学报, 2015, 38(s1):103-106. Li Zhao, Lu Wei, Xing Weiwei, et al. Image retrieval based on CNN visual features[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(s1):103-106.
[5] You Q, Yang J, Yang J, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//29th AAAI Conference on Artificial Intelligence. Menlo Park:AAAI, 2015:381-388.
[6] Campos V, Jou B, Giro-i-Nieto X. From pixels to sentiment:fine-tuning CNNs for visual sentiment prediction[J]. Image and Vision Computing, 2017(65):15-22.
[7] Islam J, Zhang Y. Visual sentiment analysis for social images using transfer learning approach[C]//IEEE International Conferences on Big Data and Cloud Computing. Piscataway:IEEE, 2016:124-130.
[8] Andrew G, Arora R, Bilmes J, et al. Deep canonical correlation analysis[C]//International Conference on Machine Learning. Atlanta:ICML, 2013:1247-1255.
[9] Dorfer M, Kelz R, Widmer G, et al. Deep linear discriminant analysis[C]//International Conference on Learning Representations. San Juan:ICLR, 2016:1-13.
[10] Katsurai M, Satoh S. Image sentiment analysis using latent correlations among visual, textual, and sentiment views[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE, 2016:2837-2841. |