北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (2): 81-85.doi: 10.13190/j.jbupt.2017-158

• 论文 • 上一篇    下一篇

Fermat数和一类极大周期序列的2-adic复杂度

王艳, 李顺波, 赵松, 薛改娜   

  1. 西安建筑科技大学 理学院, 西安 710055
  • 收稿日期:2017-08-04 出版日期:2018-04-28 发布日期:2018-03-17
  • 作者简介:王艳(1982-),女,博士,副教授,E-mail:wangyan@xauat.edu.cn.
  • 基金资助:
    陕西省自然科学基础研究计划项目(2014JQ1027);西安建筑科技大学基础研究基金项目(JC1416);国家自然科学基金项目(11471255);西安建筑科技大学校人才基金项目(RC1338)

Fermat Number and 2-Adic Complexity of a Class of Maximum Period Sequence

WANG Yan, LI Shun-bo, ZHAO Song, XUE Gai-na   

  1. Department of Mathematics, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2017-08-04 Online:2018-04-28 Published:2018-03-17

摘要: 发现了Fermat数和由单圈T函数生成的极大周期序列的关系,利用Fermat数的素性理论研究了单圈T函数生成的第k位序列,按状态输出序列的2-adic复杂度取值和界.结果表明,单圈T函数序列生成的这2种序列不能形成l序列.

关键词: Fermat数, 序列, 2-adic复杂度, 单圈T函数

Abstract: The relationship between the Fermat number and the T function generated by single cycle T-function's maximal periodic sequence were found. The 2-adic complexity of the kth coordinate sequence and the state output sequence were studied. Values and bounds of the 2-adic complexity were obtained. It is shown that the two sequences generated by the single cycle T-function cannot form l-sequences.

Key words: Fermat number, sequence, 2-adic complexity, single circle T-function

中图分类号: