北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (4): 1-7.doi: 10.13190/j.jbupt.2018-278

• 论文 •    下一篇

基于频繁活动集序列编码业务过程预测性监控

黄晓芙1, 曹健1, 谭煜东2   

  1. 1. 上海交通大学 计算机科学与工程系, 上海 200240;
    2. 携程(上海)计算机技术有限公司, 上海 200233
  • 收稿日期:2018-11-12 出版日期:2019-08-28 发布日期:2019-08-26
  • 通讯作者: 曹健(1972-),男,教授,博士生导师,E-mail:cao-jian@sjtu.edu.cn. E-mail:cao-jian@sjtu.edu.cn
  • 作者简介:黄晓芙(1994-),女,硕士生.
  • 基金资助:
    国家重点研发计划项目(2018YFB1003800)

Business Process Predictive Monitoring Based on Sequence Encoding of Frequent Activity Sets

HUANG Xiao-fu1, CAO Jian1, TAN Yu-dong2   

  1. 1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Ctrip Computer Technology(Shanghai) Company Limited, Shanghai 200233, China
  • Received:2018-11-12 Online:2019-08-28 Published:2019-08-26
  • Supported by:
     

摘要: 业务流程预测性监控是过程管理的重要内容,已有的研究大部分是基于显式的工作流模型进行预测.但是在实际应用中,企业可能并没有对整个过程实施端到端的工作流建模和管理,或者由于权限原因只能够获得部分执行日志,难以基于完整的业务流程模型进行预测,对此,提出了一种基于频繁活动集的序列编码处理日志中的低频活动,并通过搜寻历史相似数据进行预测的方法.该方法能够随着日志的更新适应由于概念漂移导致的模型改变.在真实的数据集上进行的实验结果验证了算法的有效性.

关键词: 过程挖掘, 概念漂移, 序列编码, 预测性监控

Abstract: The problem of predicting an ongoing business process based on sequence is discussed. Business process predictive monitoring is an important part of process mining. Most of the existing research focuses on forecasting based on explicit workflow models. However, the enterprise may not implement end-to-end workflow modeling and management for the process, or only own partial execution logs due to permissions. In these cases, it is difficult to make prediction based on the complete process model. This article proposes a frequent activity set based sequence encoding method to handle the low-frequency activities in the log, and performs prediction by searching historical similar data. As the log is updated, the algorithm will adapt to model changes due to the concept drift. The algorithm is validated on real data sets.

Key words: process mining, concept drift, sequence coding, predictive monitoring

中图分类号: