北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (1): 121-124.doi: 10.13190/j.jbupt.2016-272

• 研究报告 • 上一篇    下一篇

基于RLS的改进双线性模型的稳定性分析

赵霞, 倪颖婷, 李瞻宁   

  1. 同济大学 电子与信息工程学院, 上海 201804
  • 收稿日期:2016-11-04 出版日期:2018-02-28 发布日期:2018-01-04
  • 作者简介:赵霞(1974-),女,副教授,硕士生导师,E-mail:03201@tongji.edu.cn.

Stability Analysis for a Modified Bilinear Model Based on Recursive Least Squares

ZHAO Xia, NI Ying-ting, LI Zhan-ning   

  1. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
  • Received:2016-11-04 Online:2018-02-28 Published:2018-01-04

摘要: 双线性多项式的非线性特征只能靠输入-输出交叉项表达,无法精确地表达高阶非线性系统.为此,对改进双线性多项式模型的稳定性进行了研究.利用迭代最小二乘法辨识改进双线性模型的参数,在复数域中,推导该算法的迭代公式,并验证了系统模型的稳定性.结果表明,通过迭代最小二乘法辨识得到的系统模型为有界输入-有界输出稳定.

关键词: 迭代最小二乘法, 改进双线性模型, 稳定性

Abstract: The nonlinearity of bilinear polynomial only relies on the input-output cross term to express; it is hard to accurately describe the system with higher order nonlinearity. For improving the performance of models, many modified bilinear polynomials are proposed. However, the complex feedback terms cause models to be unstable, which restrict the modified models to be widely used in practice. Therefore, the stability of a modified bilinear model was analyzed. Recursive least squares (RLS) is used to identify parameters of the modified bilinear model, and the iterative formulas of the algorithm are deduced in the complex field. Simultaneously, the stability of the identified system is verified. It is shown that the bilinear system model identified by RLS, has bounded-input bounded-output stability.

Key words: recursive least squares, modified bilinear model, stability

中图分类号: