[1] 穆祥昆, 王劲松, 薛羽丰, 等.基于活跃熵的网络异常流量检测方法[J].通信学报, 2013, 34(z2): 51-57. Mu Xiangkun, Wang Jinsong, Xue Yufeng, et al.Abnormal network traffic detection approach based on alive entropy[J]. Journal on Communications, 2013, 34(z2): 51-57.
[2] Zhang Ming, Xu Boyi, Gong Jie.An anomaly detection model based on one-class SVM to detect network intrusions[C]//2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN). Shenzhen:[s.n.], 2015: 102-107.
[3] 王宪, 柳絮青, 宋书林, 等. 一种无监督学习的异常行为检测方法[J]. 光电工程, 2014(3): 43-48. Wang Xian, Liu Xuqing, Song Shulin, et al. Unsupervised learning algorithm for abnormal behavior detection[J]. Opto-Electronic Engineering, 2014(3): 43-48.
[4] Tang X. The stream detection based on local outlier factor[J].Journal of Information & Computational Science, 2015, 12(17): 6361-6369.
[5] 曲朝阳, 陈帅, 杨帆, 等. 基于云计算技术的电力大数据预处理属性约简方法[J]. 电力系统自动化, 2014, 38(8): 67-71. Qu Zhaoyang, Chen Shuai, Yang Fan, et al. An attribute reducing method for electric power big data preprocessing based on cloud computing technology[J]. Automation of Electric Power Systems, 2014, 38(8): 67-71.
[6] Tarassenko L, Hayton P, Brady M.Novelty detection for the identification of masses in mammograms[C]//Fourth International Conference on Artificial Neural Networks. London:[s.n.], 1995: 442-447.
[7] 戴健, 丁治明. 基于MapReduce快速kNN Join方法[J]. 计算机学报, 2015, 38(1): 99-108. Dai Jiang, Ding Zhiming.MapReduce based fast kNN join[J].Chinese Journal of Computers, 2015, 38(1): 99-108. |