北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (s1): 108-111.doi: 10.13190/j.jbupt.2017.s.024

• 论文 • 上一篇    下一篇

基于KTLAD的电力数据网业务流量异常检测

应斐昊1, 邢宁哲2, 纪雨彤2, 纪晨晨1, 李文璟1   

  1. 1. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876;
    2. 国网冀北电力有限公司 信息通信分公司, 北京 100053
  • 收稿日期:2016-05-30 出版日期:2017-09-28 发布日期:2017-09-28
  • 作者简介:应斐昊(1992-),男,硕士生,E-mail:709369405@qq.com;李文璟(1973-),女,教授,硕士生导师.
  • 基金资助:
    国家电网科技项目(52010116000W)

KTLAD Based Traffic Anomaly Detection Algorithm of Electric Power Data Network

YING Fei-hao1, XING Ning-zhe2, JI Yu-tong2, JI Chen-chen1, LI Wen-jing1   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Information Communications Branch, State GridJibei North Electric Power Company Limited, Beijing 100053, China
  • Received:2016-05-30 Online:2017-09-28 Published:2017-09-28

摘要: 针对电力数据网对流量异常检测的时效性要求,提出一种改进的局部异常因子异常检测方法KTLAD.该方法基于密度进行检测,计算每个流量包与附近流量包的分隔程度,无需预先设置流量的具体异常状态,相对传统方法具有很高的灵活性.仿真结果验证了KTLAD在电力数据网中业务流量异常检测中的可行性,并且有效地降低了时间成本.

关键词: 电力数据网, 流量异常检测, k-d tree based lof anomaly detection

Abstract: Due to the efficiency requirements of traffic anomaly detection in electric power data network, an improved anomaly detection algorithm named k-d tree based Lof anomaly detection(KTLAD) based on LOF was proposed. Based on density detection, the algorithm calculated the separating level of each traffic package with nearby ones without pre-set specific abnormal state of traffic. Comparing to the traditional algorithms, the proposed algorithm was more flexible. Simulation results showed that the KTLAD was feasible in traffic anomaly detection in electric power data network and reduced time cost effectively.

Key words: electric power data network, traffic anomaly detection, k-d tree based lof anomaly detection

中图分类号: