北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (3): 104-109.doi: 10.13190/j.jbupt.2017.03.015

• 研究报告 • 上一篇    下一篇

面向配电网故障数据的BIC评估后向选择方法

曾兴东1,2, 林荣恒1,2, 邹华1, 张勇3   

  1. 1. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876;
    2. 中国电子科技集团公司第五十四研究所 通信网信息传输与分发技术重点实验室, 石家庄 050081;
    3. 国家电网 上海电力公司, 上海 200122
  • 收稿日期:2016-08-04 出版日期:2017-06-28 发布日期:2017-05-25
  • 作者简介:曾兴东(1992-),男,硕士生,E-mail:zengxdbupt@163.com;邹华(1969-),女,教授,硕士生导师.
  • 基金资助:
    国家高技术研究发展计划(863计划)项目(2015AA050203);北京市自然科学基金项目(4174099)

An BIC Selection Method for Distribution Network Fault Data Feature Dimension Reduction

ZENG Xing-dong1,2, LIN Rong-heng1,2, ZOU Hua1, ZHANG Yong3   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, The 54 th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China;
    3. State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China
  • Received:2016-08-04 Online:2017-06-28 Published:2017-05-25

摘要: 10 kV配电网所处环境复杂,引发故障的原因很多,在使用数据挖掘方法对配电网故障进行分析时,太多的特征会对挖掘模型造成负面影响.为了防止挖掘模型考虑过多无用信息,需首先对数据进行特征选择来实现降维,因此提出了基于贝叶斯信息准则(BIC)的模型评估后向选择算法,对故障因素进行降维.BIC评估准则能够尽可能地简化模型,降低维度,而后向选择算法可以快速得到最优的简化模型,两者的结合提升了降维的速度,并能够得到更加简化的模型.实验结果表明,采用基于BIC评估的后向选择算法有助于后续模型准确性的提升,可提高训练效率.

关键词: 配电网故障分析, 降维, BIC模型评估, 后向选择算法

Abstract: Feature selection is important to improve the model accuracy and reduce overfitting. The 10 kV power distribution network is complex and there are too many features for a data mining model to work. Before modeling power fault data, the dimensionality reduction and model selection is necessary. In order to solve this problem, a Bayesian information criterions (BIC) model selection algorithm along with backward selection algorithm was proposed. BIC aims to reduce the complexity of model and the backward selection can reach fast convergence. Experiments show that the algorithm works well. It is proven that the algorithm proposed here is of advantage to improve model accuracy and data training efficiency.

Key words: distribution network fault data, dimensionality reduction, Bayesian information criterions, backward selection algorithm

中图分类号: