北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (2): 1-10.doi: 10.13190/j.jbupt.2017.02.001
• 综述 • 下一篇
面向5G需求的移动边缘计算
田辉, 范绍帅, 吕昕晨, 赵鹏涛, 贺硕
- 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876
-
收稿日期:
2017-04-04出版日期:
2017-04-28发布日期:
2017-04-28 -
作者简介:
田辉(1963-),女,教授,博士生导师,E-mail:tianhui@bupt.edu.cn. -
基金资助:
国家自然科学基金项目(61471060);国家自然科学基金委创新研究群体项目(61421061);国家留学基金委项目
Mobile Edge Computing for 5G Requirements
TIAN Hui, FAN Shao-shuai, LÜ Xin-chen, ZHAO Peng-tao, HE Shuo
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2017-04-04Online:
2017-04-28Published:
2017-04-28
摘要: 移动边缘计算有助于实现第五代移动通信(5G)新业务超低时延、高能效、超高可靠和超高连接密度的需求,是未来5G通信的关键技术.从细粒度任务卸载算法、高可靠任务卸载与预测算法以及服务器联合资源管理策略3个方面,介绍了现有移动边缘计算技术在面向5G业务需求的工作进展,分析了未来移动边缘计算面临的挑战,并给出了未来的研究方向和研究热点.
中图分类号:
引用本文
田辉, 范绍帅, 吕昕晨, 赵鹏涛, 贺硕. 面向5G需求的移动边缘计算[J]. 北京邮电大学学报, 2017, 40(2): 1-10.
TIAN Hui, FAN Shao-shuai, LÜ Xin-chen, ZHAO Peng-tao, HE Shuo. Mobile Edge Computing for 5G Requirements[J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2017, 40(2): 1-10.
使用本文
[1] Cisco. Cisco visual networking index:global mobile data traffic forecast update, 2016-2021 white paper[EB/OL].[2017-03-01]. http://10.3.200.202/cache/10/03/cisco.com/89e8529e7886890c828d4a976994f806/mobile-white-paper-c11-520862.pdf. [2] Shi Bowen, Yang Ji, Huang Zhanpeng, et al. Offloading guidelines for augmented reality applications on wearable devices[C]//ACM International Conference.[S.l.]:ACM, 2015:1271-1274. [3] Miettinen A P, Nurminen J K. Energy efficiency of mobile clients in cloud computing[J]. HotCloud, 2010(10):4-4. [4] Melendez S. Computation offloading decisions for reducing completion time[Z]. arXiv, 2016:1608. 05839. [5] Zhang Weiwen, Wen Yonggang, Guan K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013, 12(9):4569-4581. [6] Kumar K, Lu Y H. Cloud computing for mobile users:can offloading computation save energy[J]. Computer, 2010, 43(4):51-56. [7] Kumar K, Liu Jibang, Lu Y H, et al. A survey of computation offloading for mobile systems[J]. Mobile Networks and Applications, 2013, 18(1):129-140. [8] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing:distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6):45-55. [9] Yuan Jibang, Nahrstedt K. Energy-efficient soft real-time CPU scheduling for mobile multimedia systems[C]//ACM SIGOPS Operating Systems Review.[S.l.]:ACM, 2003:149-163. [10] Jia M, Cao Jibang, Yang Lei. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing[C]//2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2014:352-357. [11] Mahmoodi S E, Uma R N, Subbalakshmi K P. Optimal joint scheduling and cloud offloading for mobile applications[J]. IEEE Transactions on Cloud Computing, 2016(99):1-1. [12] Kao Y H, Krishnamachari B, Ra M R, et al. Hermes:latency optimal task assignment for resource-constrained mobile computing[C]//2015 IEEE Conference on Computer Communications (INFOCOM).[S.l.]:IEEE, 2015:1894-1902. [13] Zhang Weiwen, Wen Yonggang, Wu D O. Collaborative task execution in mobile cloud computing under a stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2015, 14(1):81-93. [14] Khalili S, Simeone O. Inter-layer per-mobile optimization of cloud mobile computing:a message-passing approach[J]. Transactions on Emerging Telecommunications Technologies, 2016, 27(6):814-827. [15] Di Lorenzo P, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2013:1307. 3835. [16] Mahmoodi S E, Subbalakshmi K P, Sagar V. Cloud offloading for multi-radio enabled mobile devices[C]//2015 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2015:5473-5478. [17] Deng Maofei, Tian Hui, Fan Bo. Fine-granularity based application offloading policy in cloud-enhanced small cell networks[C]//2016 IEEE International Conference on Communications Workshops (ICC).[S.l.]:IEEE, 2016:638-643. [18] Zhao Pengtao, Tian Hui, Fan Bo. Partial critical path based greedy offloading in small cell cloud[C]//IEEE VTC.[S.l.]:IEEE, 2016:1-5. [19] Wang Yanting, Sheng Min, Wang Xijun, et al. Mobile-edge computing:partial offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10):4268-4282. [20] Huang Dong, Wang Ping, Niyato D. A dynamic offloading algorithm for mobile computing[J]. IEEE Transactions on Wireless Communications, 2012, 11(6):1991-1995. [21] Liu Juan, Mao Yuyi, Zhang Jun, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]//2016 IEEE International Symposium on Information Theory (ISIT).[S.l.]:IEEE, 2016:1451-1455. [22] Chen Shuang, Wang Yanzhi, Pedram M. A semi-markovian decision process based control method for offloading tasks from mobile devices to the cloud[C]//Global Communications Conference (GLOBECOM).[S.l.]:IEEE, 2013:2885-2890. [23] Hong S T, Kim H. QoE-aware computation offloading scheduling to capture energy-latency tradeoff in mobile clouds[C]//201613th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).[S.l.]:IEEE, 2016:1-9. [24] Kwak J, Kim Y, Lee J, et al. DREAM:dynamic resource and task allocation for energy minimization in mobile cloud systems[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(12):2510-2523. [25] Jiang Zhefeng, Mao Shiwen. Energy delay tradeoff in cloud offloading for multi-core mobile devices[J]. IEEE Access, 2015(3):2306-2316. [26] Lü Xinchen, Tian Hui. Adaptive receding horizon offloading strategy under dynamic environment[J]. IEEE Communications Letters, 2016, 20(5):878-881. [27] He Shuo, Tian Hui, Lü Xinchen. Edge popularity prediction based on social-driven propagation dynamics[J]. IEEE Communications Letters, 2017, 21(5):1-4. [28] Wang Chuanmeizhi, Li Yong, Jin Depeng. Mobility-assisted opportunistic computation offloading[J]. IEEE Communications Letters, 2014, 18(10):1779-1782. [29] Zhang Yang, Niyato D, Wang Ping. Offloading in mobile cloudlet systems with intermittent connectivity[J]. IEEE Transactions on Mobile Computing, 2015, 14(12):2516-2529. [30] Lee K, Shin I. User mobility model based computation offloading decision for mobile cloud[J]. JCSE, 2015, 9(3):155-162. [31] Rahimi M R, Venkatasubramanian N, Vasilakos A V. MuSIC:mobility-aware optimal service allocation in mobile cloud computing[C]//2013 IEEE Sixth International Conference on Cloud Computing (CLOUD).[S.l.]:IEEE, 2013:75-82. [32] Prasad A, Lundén P, Moisio M, et al. Efficient mobility and traffic management for delay tolerant cloud data in 5G networks[C]//2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).[S.l.]:IEEE, 2015:1740-1745. [33] Ko S W, Huang Kaibin, Kim S L, et al. Online prefetching for mobile computation offloading[Z]. arXiv, 2016:1608. 04878. [34] Li Yujin, Sun Lei, Wang Wenye. Exploring device-to-device communication for mobile cloud computing[C]//2014 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2014:2239-2244. [35] Chen C A, Won M, Stoleru R, et al. Energy-efficient fault-tolerant data storage and processing in mobile cloud[J]. IEEE Transactions on Cloud Computing, 2015, 3(1):28-41. [36] Chen C A, Stoleru R, Xie G G. Energy-efficient and fault-tolerant mobile cloud storage[C]//20165th IEEE International Conference on Cloud Networking (Cloudnet).[S.l.]:IEEE, 2016:51-57. [37] Chaisiri S, Lee B S, Niyato D. Optimization of resource provisioning cost in cloud computing[J]. IEEE Transactions on Services Computing, 2012, 5(2):164-177. [38] Zhang Yuan, Yan Jinyao, Fu Xiaoming. Reservation-based resource scheduling and code partition in mobile cloud computing[C]//2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2016:962-967. [39] Lü Xinchen, Tian Hui, Zhang Ping, et al. Multi-user joint task offloading and resources optimization in proximate clouds[J]. IEEE Transactions on Vehicular Techology, 2017, 66(4):3435-3447. [40] You Changsheng, Huang Kaibin, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3):1397-1411. [41] Barbarossa S, Sardellitti S, Lorenzo P Di. Joint allocation of computation and communication resources in multiuser mobile cloud computing[C]//IEEE International Workshop Signal Processing Advances Wireless Communications (SPAWC). Darmstadt, Germany:[s.n.], 2013:26-30. [42] Lorenzo P D, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2016:1307. 3835v3. [43] Hoang D T, Niyato D, Wang Ping. Optimal admission control policy for mobile cloud computing hotspot with cloudlet[C]//IEEE Wireless Communications and Networking Conference (WCNC). Paris, France:[s.n.], 2012:3145-3149. [44] Mao Yuyi, Zhang Jun, S Song, et al. Power-delay tradeoff in multi-user mobile-edge computing systems[C]//IEEE Global Communications Conference (GLOBECOM). Washington, DC:[s.n.], 2016:1-6. [45] Munoz O, P-Iserte A, Vidal J. Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10):497-508. [46] Munoz O, P-Iserte A, Vidal J. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing Over Networks, 2015, 1(2):89-103. [47] Wang Kezhi, Yang Kun, Magurawalage C. Joint energy minimization and resource allocation in C-RAN with mobile cloud[J]. IEEE Transactions on Cloud Computing, 2016(99):1-10. [48] Chen Xu, Jiao Lei, Li Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE Transactions on Networking, 2016(24):2795-2808. [49] Ma Xiao, Lin Chuang, Xiang Xudong, et al. Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing[C]//ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). Cancun, Mexico:[s. n.], 2015:271-278. [50] Deng Maofei, Tian Hui, Lü Xinchen. Adaptive sequential offloading game for multi-cell mobile edge computing[C]//201623rd International Conference on Telecommunications (ICT). Thessaloniki:[s. n.], 2016:1-5. [51] Lopez-Perez D, Guvenc I, Chu Xiaoli. Mobility management challenges in 3GPP heterogeneous networks[J]. IEEE Communications Magazine, 2012, 50(12):70-78. [52] Kassar M, Kervella B, Pujolle G. An overview of vertical handover decision strategies in heterogeneous wireless networks[J]. Computer Communications, 2008, 31(10):2607-2620. |
[1] | 魏明亮 耿绥燕 赵雄文 胡玮 范静怡. 超密集网络中移动边缘计算的资源分配和任务卸载联合优化研究[J]. 北京邮电大学学报, 2023, 46(2): 50-56. |
[2] | 李晓辉 苏家楠 吕思婷 张鹏. 基于SMDP模型的车路协同任务智能卸载算法研究[J]. 北京邮电大学学报, 2023, 46(2): 15-21. |
[3] | 付志远 施丽琴 叶迎晖 卢光跃. 反向散射辅助的无线供能NOMA-MEC网络中公平性优化研究[J]. 北京邮电大学学报, 2023, 46(2): 71-77. |
[4] | 谢人超 杨煜天 唐琴琴 陈清霞 向雪霜. 低轨卫星网络星载边缘DNN推理策略研究[J]. 北京邮电大学学报, 2023, 46(2): 57-63. |
[5] | 蒋丽 缪家辉 郑镐 谢正昊 赖健鑫. 虚实映射误差条件下数字孪生辅助的无人机网络计算任务卸载及资源自适应优化机制[J]. 北京邮电大学学报, 2022, 45(6): 138-144. |
[6] | 李松 王新荣 王博文 孙彦景 陈瑞瑞. 基于随机网络演算的车联网边缘计算性能分析[J]. 北京邮电大学学报, 2022, 45(5): 16-22. |
[7] | 鲁蔚锋, 李学晴, 徐佳, 陈思光. 边缘计算架构中P2P的组合多资源任务卸载算法[J]. 北京邮电大学学报, 2022, 45(4): 98-103. |
[8] | 郅佳琳, 王楠, 满毅, 滕颖蕾. 面向硬件感知的边缘计算卸载和资源分配[J]. 北京邮电大学学报, 2022, 45(2): 22-28. |
[9] | 杜梅, 周军华, 李敦桥, 陈士钊, 魏翼飞. MEC计算卸载与资源分配联合智能优化方案[J]. 北京邮电大学学报, 2022, 45(2): 65-71. |
[10] | 张雨晴, 李云, 黄鸿锐, 庄宏成. 异构网络中任务卸载与资源分配联合优化算法[J]. 北京邮电大学学报, 2022, 45(2): 91-97. |
[11] | 郑远鹏, 张天魁, 朱光宇, 沈鸿. MEC系统中面向网络切片的3C联合资源分配算法[J]. 北京邮电大学学报, 2021, 44(5): 41-47. |
[12] | 康曼聪, 李曦, 纪红, 张鹤立. 基于任务间依赖关系的小小区协作卸载策略[J]. 北京邮电大学学报, 2021, 44(1): 72-78. |
[13] | 薛建彬, 白子梅. 边缘计算中移动终端安全高效认证协议[J]. 北京邮电大学学报, 2021, 44(1): 110-116. |
[14] | 赵伟, 王斌, 鲍慧, 赵品芳, 李保罡. 基于mMIMO的MEC安全节能资源分配方法[J]. 北京邮电大学学报, 2020, 43(6): 126-131. |
[15] | 马璐, 刘铭, 李超, 路兆铭, 马欢. 面向6G边缘网络的云边协同计算任务调度算法[J]. 北京邮电大学学报, 2020, 43(6): 66-73. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||