[1] Cisco. Cisco visual networking index:global mobile data traffic forecast update, 2016-2021 white paper[EB/OL].[2017-03-01]. http://10.3.200.202/cache/10/03/cisco.com/89e8529e7886890c828d4a976994f806/mobile-white-paper-c11-520862.pdf.
[2] Shi Bowen, Yang Ji, Huang Zhanpeng, et al. Offloading guidelines for augmented reality applications on wearable devices[C]//ACM International Conference.[S.l.]:ACM, 2015:1271-1274.
[3] Miettinen A P, Nurminen J K. Energy efficiency of mobile clients in cloud computing[J]. HotCloud, 2010(10):4-4.
[4] Melendez S. Computation offloading decisions for reducing completion time[Z]. arXiv, 2016:1608. 05839.
[5] Zhang Weiwen, Wen Yonggang, Guan K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013, 12(9):4569-4581.
[6] Kumar K, Lu Y H. Cloud computing for mobile users:can offloading computation save energy[J]. Computer, 2010, 43(4):51-56.
[7] Kumar K, Liu Jibang, Lu Y H, et al. A survey of computation offloading for mobile systems[J]. Mobile Networks and Applications, 2013, 18(1):129-140.
[8] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing:distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6):45-55.
[9] Yuan Jibang, Nahrstedt K. Energy-efficient soft real-time CPU scheduling for mobile multimedia systems[C]//ACM SIGOPS Operating Systems Review.[S.l.]:ACM, 2003:149-163.
[10] Jia M, Cao Jibang, Yang Lei. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing[C]//2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2014:352-357.
[11] Mahmoodi S E, Uma R N, Subbalakshmi K P. Optimal joint scheduling and cloud offloading for mobile applications[J]. IEEE Transactions on Cloud Computing, 2016(99):1-1.
[12] Kao Y H, Krishnamachari B, Ra M R, et al. Hermes:latency optimal task assignment for resource-constrained mobile computing[C]//2015 IEEE Conference on Computer Communications (INFOCOM).[S.l.]:IEEE, 2015:1894-1902.
[13] Zhang Weiwen, Wen Yonggang, Wu D O. Collaborative task execution in mobile cloud computing under a stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2015, 14(1):81-93.
[14] Khalili S, Simeone O. Inter-layer per-mobile optimization of cloud mobile computing:a message-passing approach[J]. Transactions on Emerging Telecommunications Technologies, 2016, 27(6):814-827.
[15] Di Lorenzo P, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2013:1307. 3835.
[16] Mahmoodi S E, Subbalakshmi K P, Sagar V. Cloud offloading for multi-radio enabled mobile devices[C]//2015 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2015:5473-5478.
[17] Deng Maofei, Tian Hui, Fan Bo. Fine-granularity based application offloading policy in cloud-enhanced small cell networks[C]//2016 IEEE International Conference on Communications Workshops (ICC).[S.l.]:IEEE, 2016:638-643.
[18] Zhao Pengtao, Tian Hui, Fan Bo. Partial critical path based greedy offloading in small cell cloud[C]//IEEE VTC.[S.l.]:IEEE, 2016:1-5.
[19] Wang Yanting, Sheng Min, Wang Xijun, et al. Mobile-edge computing:partial offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10):4268-4282.
[20] Huang Dong, Wang Ping, Niyato D. A dynamic offloading algorithm for mobile computing[J]. IEEE Transactions on Wireless Communications, 2012, 11(6):1991-1995.
[21] Liu Juan, Mao Yuyi, Zhang Jun, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]//2016 IEEE International Symposium on Information Theory (ISIT).[S.l.]:IEEE, 2016:1451-1455.
[22] Chen Shuang, Wang Yanzhi, Pedram M. A semi-markovian decision process based control method for offloading tasks from mobile devices to the cloud[C]//Global Communications Conference (GLOBECOM).[S.l.]:IEEE, 2013:2885-2890.
[23] Hong S T, Kim H. QoE-aware computation offloading scheduling to capture energy-latency tradeoff in mobile clouds[C]//201613th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).[S.l.]:IEEE, 2016:1-9.
[24] Kwak J, Kim Y, Lee J, et al. DREAM:dynamic resource and task allocation for energy minimization in mobile cloud systems[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(12):2510-2523.
[25] Jiang Zhefeng, Mao Shiwen. Energy delay tradeoff in cloud offloading for multi-core mobile devices[J]. IEEE Access, 2015(3):2306-2316.
[26] Lü Xinchen, Tian Hui. Adaptive receding horizon offloading strategy under dynamic environment[J]. IEEE Communications Letters, 2016, 20(5):878-881.
[27] He Shuo, Tian Hui, Lü Xinchen. Edge popularity prediction based on social-driven propagation dynamics[J]. IEEE Communications Letters, 2017, 21(5):1-4.
[28] Wang Chuanmeizhi, Li Yong, Jin Depeng. Mobility-assisted opportunistic computation offloading[J]. IEEE Communications Letters, 2014, 18(10):1779-1782.
[29] Zhang Yang, Niyato D, Wang Ping. Offloading in mobile cloudlet systems with intermittent connectivity[J]. IEEE Transactions on Mobile Computing, 2015, 14(12):2516-2529.
[30] Lee K, Shin I. User mobility model based computation offloading decision for mobile cloud[J]. JCSE, 2015, 9(3):155-162.
[31] Rahimi M R, Venkatasubramanian N, Vasilakos A V. MuSIC:mobility-aware optimal service allocation in mobile cloud computing[C]//2013 IEEE Sixth International Conference on Cloud Computing (CLOUD).[S.l.]:IEEE, 2013:75-82.
[32] Prasad A, Lundén P, Moisio M, et al. Efficient mobility and traffic management for delay tolerant cloud data in 5G networks[C]//2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).[S.l.]:IEEE, 2015:1740-1745.
[33] Ko S W, Huang Kaibin, Kim S L, et al. Online prefetching for mobile computation offloading[Z]. arXiv, 2016:1608. 04878.
[34] Li Yujin, Sun Lei, Wang Wenye. Exploring device-to-device communication for mobile cloud computing[C]//2014 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2014:2239-2244.
[35] Chen C A, Won M, Stoleru R, et al. Energy-efficient fault-tolerant data storage and processing in mobile cloud[J]. IEEE Transactions on Cloud Computing, 2015, 3(1):28-41.
[36] Chen C A, Stoleru R, Xie G G. Energy-efficient and fault-tolerant mobile cloud storage[C]//20165th IEEE International Conference on Cloud Networking (Cloudnet).[S.l.]:IEEE, 2016:51-57.
[37] Chaisiri S, Lee B S, Niyato D. Optimization of resource provisioning cost in cloud computing[J]. IEEE Transactions on Services Computing, 2012, 5(2):164-177.
[38] Zhang Yuan, Yan Jinyao, Fu Xiaoming. Reservation-based resource scheduling and code partition in mobile cloud computing[C]//2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2016:962-967.
[39] Lü Xinchen, Tian Hui, Zhang Ping, et al. Multi-user joint task offloading and resources optimization in proximate clouds[J]. IEEE Transactions on Vehicular Techology, 2017, 66(4):3435-3447.
[40] You Changsheng, Huang Kaibin, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3):1397-1411.
[41] Barbarossa S, Sardellitti S, Lorenzo P Di. Joint allocation of computation and communication resources in multiuser mobile cloud computing[C]//IEEE International Workshop Signal Processing Advances Wireless Communications (SPAWC). Darmstadt, Germany:[s.n.], 2013:26-30.
[42] Lorenzo P D, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2016:1307. 3835v3.
[43] Hoang D T, Niyato D, Wang Ping. Optimal admission control policy for mobile cloud computing hotspot with cloudlet[C]//IEEE Wireless Communications and Networking Conference (WCNC). Paris, France:[s.n.], 2012:3145-3149.
[44] Mao Yuyi, Zhang Jun, S Song, et al. Power-delay tradeoff in multi-user mobile-edge computing systems[C]//IEEE Global Communications Conference (GLOBECOM). Washington, DC:[s.n.], 2016:1-6.
[45] Munoz O, P-Iserte A, Vidal J. Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10):497-508.
[46] Munoz O, P-Iserte A, Vidal J. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing Over Networks, 2015, 1(2):89-103.
[47] Wang Kezhi, Yang Kun, Magurawalage C. Joint energy minimization and resource allocation in C-RAN with mobile cloud[J]. IEEE Transactions on Cloud Computing, 2016(99):1-10.
[48] Chen Xu, Jiao Lei, Li Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE Transactions on Networking, 2016(24):2795-2808.
[49] Ma Xiao, Lin Chuang, Xiang Xudong, et al. Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing[C]//ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). Cancun, Mexico:[s. n.], 2015:271-278.
[50] Deng Maofei, Tian Hui, Lü Xinchen. Adaptive sequential offloading game for multi-cell mobile edge computing[C]//201623rd International Conference on Telecommunications (ICT). Thessaloniki:[s. n.], 2016:1-5.
[51] Lopez-Perez D, Guvenc I, Chu Xiaoli. Mobility management challenges in 3GPP heterogeneous networks[J]. IEEE Communications Magazine, 2012, 50(12):70-78.
[52] Kassar M, Kervella B, Pujolle G. An overview of vertical handover decision strategies in heterogeneous wireless networks[J]. Computer Communications, 2008, 31(10):2607-2620. |