北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (1): 32-35,61.doi: 10.13190/j.jbupt.2017.01.005

• 论文 • 上一篇    下一篇

面向智能电网负荷调节的自适应储能系统控制

周文辉1,2, 钟伟锋1, 吴杰2, 邹生1   

  1. 1. 广东工业大学 自动化学院, 广州 510006;
    2. 电子科技大学 中山学院, 广东 中山 528402
  • 收稿日期:2016-06-27 出版日期:2017-02-28 发布日期:2017-03-14
  • 作者简介:周文辉(1972-),男,博士生,E-mail:zwhmailbox@tom.com.
  • 基金资助:
    国家自然科学基金项目(61422201,61370159,U1201253);广东省优秀青年教师培养计划项目(YQ2013057);广州市珠江科技新星专项(2014J2200097)

Adaptive Energy Storage System Control for Load Regulation in Smart Grid

ZHOU Wen-hui1,2, ZHONG Wei-feng1, WU Jie2, ZOU Sheng1   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Zhongshan Institute, University of Electronic Science and Technology of China, Guangdong Zhongshan 528402, China
  • Received:2016-06-27 Online:2017-02-28 Published:2017-03-14

摘要: 提出一种自适应储能系统控制方法,对智能电网中电动汽车的动态无线充电负荷进行调节。该方法在系统代价函数中联合考虑电网侧功率的变化率和充放电对电池寿命的影响,采用自适应动态规划算法,通过在线神经网络训练,估计并最优化系统长期代价,从而得到近似最优的储能系统控制策略。仿真结果表明,该方法能有效降低电网侧功率的斜率,使负荷更加平稳,同时延长储能系统中电池的寿命。

关键词: 智能电网, 电动汽车, 动态无线充电, 储能系统, 自适应动态规划

Abstract: An adaptive energy storage system control method was proposed to regulate the loads caused by electric vehicle dynamic wireless charging in smart grid. The proposed method jointly considers the grid-side power ramp rate and the charging/discharging impact on a battery's life in the system cost function. Adaptive dynamic programming algorithm is used to estimate and optimize the long-term system cost through online neural network training, so that the approximate optimal control strategy for the energy storage system can be obtained. Simulation shows that the proposed method can reduce the grid-side power ramp rate stabilizing the loads and also prolong the battery's life of the energy storage system.

Key words: smart grid, electric vehicle, dynamic wireless charging, energy storage system, adaptive dynamic programming

中图分类号: