北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (4): 1-6.doi: 10.13190/j.jbupt.2016.04.001

• 论文 •    下一篇

基于时空特征和神经网络的视频超分辨率算法

李玲慧1, 杜军平1, 梁美玉1, 任楠1, JangMyung Lee2   

  1. 1. 北京邮电大学 计算机学院, 北京 100876;
    2. 韩国釜山国立大学 电子工程系, 釜山
  • 收稿日期:2016-01-19 出版日期:2016-08-28 发布日期:2016-08-28
  • 作者简介:李玲慧(1993-),女,硕士生,E-mail:sky1ark@163.com;杜军平(1963-),女,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61320106006,61532006,61502042)

Video Super-Resolution Algorithm Based on Spatial-Temporal Feature and Neural Network

LI Ling-hui1, DU Jun-ping1, LIANG Mei-yu1, REN Nan1, JangMyung Lee2   

  1. 1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Department of Electronics Engineering, Korea Pusan National University, Busan, Korea
  • Received:2016-01-19 Online:2016-08-28 Published:2016-08-28

摘要: 提出了一种基于时空特征和神经网络的视频超分辨率重建算法,实现了视频视觉分辨率质量和细节清晰度的提升. 该算法综合考虑了外部图像块之间的关联映射关系和内部图像块间的相似性,利用深度卷积神经网络学习得到的拟合系数快速地重建视频细节. 采用时空非局部特征相似性优化重建结果,将相邻视频帧间的非局部互补冗余信息融入学习视频帧结果中,解决了误匹配等问题,进一步提升了超分辨率性能. 实验结果表明,所提方法在客观评价指标和主观视觉效果上均取得了较好的重建效果.

关键词: 超分辨率重建, 深度卷积神经网络, 时空特征, 非局部相似性

Abstract: A video super-resolution algorithm based on spatial-temporal feature and neural network(STCNN) was proposed to improve the video visual resolution quality and details clarity. This algorithm comprehensively utilizes the correlation mapping relationship among external correlative blocks and the non-local similarity existed in the spatial-temporal neighboring internal blocks, thereafter, reconstructs the video details efficiently with the fitting parameters learned by deep convolutional neural network. Spatial-temporal feature similarities are introduced to optimize the reconstruction results, and to resolve the miss-match problem and improve the super-resolution performance by making full use of the complementary and redundant relationship between low-resolution video frames. Experiments demonstrate that the proposed algorithm outperforms existing algorithms in terms of both subjective visual effects and objective evaluation index.

Key words: super-resolution reconstruction, deep convolution neural network, spatial-temporal feature, non-local similarity

中图分类号: