北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (6): 29-33.doi: 10.13190/j.jbupt.2015.06.007

• 论文 • 上一篇    下一篇

故障预测中基于模糊神经网络的规则发现方法

郑维维1, 王智立1, 邱雪松1, 王兴斌2   

  1. 1. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876;
    2. 总参信息化部驻成都地区军事代表室, 成都 610041
  • 收稿日期:2014-08-22 出版日期:2015-12-28 发布日期:2015-12-01
  • 作者简介:郑维维(1989—),女,博士生,E-mail:zhengweiwei@bupt.edu.cn;王智立(1975—),男,副教授.

An Approach for Rule Discovery Based on Fuzzy Neural Network in Failure Prediction

ZHENG Wei-wei1, WANG Zhi-li1, QIU Xue-song1, WANG Xing-bin2   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Military Representative Office in Chengdu of Information Department of PLA, Chengdu 610041, China
  • Received:2014-08-22 Online:2015-12-28 Published:2015-12-01

摘要:

为分析和发现故障预测中表征网络运行状态的多指标和故障间的关联关系,提出了一种基于模糊神经网络的规则发现方法. 该方法利用模糊神经网络具有的学习能力和模糊推理能力,分析和发现网管系统中多指标和故障的关联关系,实现基于多指标的在线故障预测. 仿真实验结果表明,有效的参数初始化确定了算法收敛方向,从而加速了收敛速度;新方法能够准确预测故障的发生,并且优化了预测准确度、真正率、误判率等性能指标.

关键词: 模糊神经网络, 规则发现, 关联关系, 故障预测

Abstract:

Aiming at analysis on correlations between failures and various indices characterizing network states in failure prediction, an approach for rule discovery based on fuzzy neural network (ARD_FNN) was proposed. It discoveries the correlations in network management system using the abilities to learn and infer by fuzzy logic in FNN. Simulations show that the effective initialization of parameters indicates the convergence directions that accelerate the convergence rates; thus the approach can predict the occurrence of failures accurately and such performance indicators as precision, true positive rate and false positive rate are optimized.

Key words: fuzzy neural network, rule discovery, correlations, failure prediction

中图分类号: