北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (5): 104-108.doi: 10.13190/j.jbupt.2015.05.020

• 研究报告 • 上一篇    下一篇

Stephenson-Ⅲ型平面六杆机构五精确点轨迹综合代数求解

魏锋1,2, 魏世民1, 张英1, 廖启征1   

  1. 1. 北京邮电大学 自动化学院, 北京 100876;
    2. 河南理工大学 机械与动力工程学院, 河南 焦作 454000
  • 收稿日期:2015-05-01 出版日期:2015-10-28 发布日期:2015-10-28
  • 作者简介:魏锋(1977—),男,副教授,E-mail:weif@bupt.edu.cn.
  • 基金资助:

    国家自然科学基金项目(51375059);国家高新技术研究与发展计划项目(2011AA040203);北京市自然科学基金项目(4132032);粮食公益性行业科研专项(201313009-06);国家科技支撑计划课题(2013BAD17B06)

The Algebraic Solution for Five Precision Points Path Synthesis of Stephenson-Ⅲ Planar Six-Bar Linkage

WEI Feng1,2, WEI Shi-min1, ZHANG Ying1, LIAO Qi-zheng1   

  1. 1. School of Automation, Beijing University of Post and Telecommunications, Beijing 100876, China;
    2. School of Mechanical and Power Engineering, Henan Polytechnic University, Henan Jiaozuo 454000, China
  • Received:2015-05-01 Online:2015-10-28 Published:2015-10-28

摘要:

提出Stephenson-Ⅲ型平面六杆机构五精确点轨迹综合代数求解方法.将Stephenson-Ⅲ型平面六杆机构拆分为一个二级杆组和一个四杆机构,先对二级杆组五精确点综合,再对四杆机构进行精确点综合. 采用矩阵约束法建立该问题的数学模型,使用Groebner基和Sylvester结式(GS法)相结合的代数方法进行求解,最终获得一元高次方程及其全部封闭解析解. 通过数值实例,并使用Solidworks和SAM软件对计算结果进行仿真,结果表明该方法的正确性. 该方法为进一步采用代数法对其他类型平面六杆机构轨迹综合问题的研究提供了参考.

关键词: 轨迹综合, 六杆机构, 代数法, Groebner基, Sylvester结式

Abstract:

An algebraic solution for five precision points path synthesis of Stephenson-Ⅲ planar six-bar linkage was presented. The Stephenson-Ⅲ planar six-bar linkage is decomposed into two parts: a dyad and a four-bar linkage. To synthesize the two parts, the dyad first then the four-bar linkage, the kinematic constraint equations are formulated based on displacement matrix. The equations are solved with the Groebner-Sylvester (GS) hybrid approach in which a high degree univariate equation together with all its closed form solution is obtained finally. A numerical example was provided to validate the algorithm and the solutions are verified by Solidworks and SAM. The method given in this article can also be used to solve other types of synthesis problem concerning planar six-bar linkage.

Key words: path synthesis, planar six-bar linkage, algebraic method, Groebner basis, Sylvester resultant

中图分类号: