摘要:
针对旋转设备原始故障特征空间中存在的冗余特征问题,提出一种基于支持向量数据描述(SVDD)和遗传算法的故障特征优化方法. 通过理论和实验分析构造了相对完备的设备声学故障特征空间;依据特征可分离性评价准则和SVDD识别率从原始故障样本数据集中提取出先验知识,指导种群的初始化;以类〖JP9〗内-〖JP〗类间距离判据和故障分类器的识别率评价种群中个体的适应度,在此基础上建立改进的遗传算法搜索最优故障特征子集.基于转子振动台所模拟的不平衡故障实验样本数据集,验证了该方法的有效性.
中图分类号:
陈斌,阎兆立,程晓斌. 旋转设备声学故障特征提取与优化方法[J]. 北京邮电大学学报, 2011, 34(4): 70-74.