北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (3): 79-86.doi: 10.13190/j.jbupt.2020-207

• 论文 • 上一篇    下一篇

一种自适应混合滤波姿态解算算法

黎星华, 刘晓平, 王刚, 赵云龙, 李永威   

  1. 北京邮电大学 现代邮政学院, 北京 100876
  • 收稿日期:2020-10-20 出版日期:2021-06-28 发布日期:2021-06-23
  • 通讯作者: 刘晓平(1965-),男,教授,博士生导师,E-mail:liuxp@bupt.edu.cn. E-mail:liuxp@bupt.edu.cn
  • 作者简介:黎星华(1993-),男,博士生.
  • 基金资助:
    应急管理部消防救援局科技计划项目(2020XFZD15)

An Adaptive Hybrid Filter Algorithm for Attitude Estimation

LI Xing-hua, LIU Xiao-ping, WANG Gang, ZHAO Yun-long, LI Yong-wei   

  1. School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2020-10-20 Online:2021-06-28 Published:2021-06-23

摘要: 针对低成本惯性测量器件采用基于滤波的姿态解算算法存在精度低、抗干扰性差等问题,提出了一种基于共轭梯度法与互补滤波相融合的自适应参数调节的混合滤波算法.该算法首先利用共轭梯度算法对加速度计和磁力计的数据进行姿态四元数的迭代估算,再通过互补滤波算法将陀螺仪更新的姿态与其进行信息融合,最后根据载体的运动状态自适应调节滤波参数,实现最优姿态估计.为验证所提算法的可行性和抗干扰性,与其他滤波融合算法在移动机器人平台上进行抗磁干扰和抗运动加速度干扰实验.实验结果表明,该算法可以有效地降低磁干扰和运动加速度干扰对姿态角解算的影响,其姿态角解算精度优于传统的梯度下降法、高斯牛顿法和共轭梯度法的滤波融合算法.

关键词: 姿态估计, 信息融合, 共轭梯度算法, 互补滤波, 自适应

Abstract: In order to solve the problems such as low precision, poor anti-jamming ability in attitude estimation algorithms based on filtering for low-cost inertial sensors, a new adaptive hybrid filter algorithm based on conjugate gradient method and complementary filter is proposed. The conjugate gradient algorithm adopted to process the data measured by accelerometer and magnetometer at first, and estimated their attitude quaternion iteratively. Then, the complementary filter is used to fuse the information of the gyro updated attitude and the iterative optimized attitude of the conjugate gradient method. Finally, according to the motion state of the carrier, the complementary filtering parameter is adjusted adaptively to obtain the optimal attitude estimation. To verify that the algorithm is feasible and anti-interference, it is compared with other filter fusion algorithms in the experiments of anti-magnetic interference and anti-interference of motion acceleration. It is shown that the proposed algorithm effectively reduces the interferences caused by magnetic field and motion acceleration, and has better precision of attitude angle estimation than that of traditional gradient descent algorithm, Gauss Newton algorithm and conjugate gradient algorithm.

Key words: attitude estimation, information fusion, conjugate gradient algorithm, complementary filter, adaptive

中图分类号: