北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (1): 16-21.doi: 10.13190/j.jbupt.2018-111

• 论文 • 上一篇    下一篇

基于动态聚类混合拓扑结构粒子群算法的PDVRPTF

杨福兴1, 胡智超1, 孔继利2   

  1. 1. 北京邮电大学 自动化学院, 北京 100876;
    2. 北京邮电大学 现代邮政学院, 北京 100876
  • 收稿日期:2018-06-14 出版日期:2019-02-28 发布日期:2019-03-08
  • 通讯作者: 胡智超(1993-),男,硕士生,E-mail:hzc199308@163.com. E-mail:hzc199308@163.com
  • 作者简介:杨福兴(1964-),男,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(71772010);北京邮电大学青年科研创新计划专项-人才项目(2017RC26)

PDVRPTF Based on Dynamic Clustering Hybrid Topological Structure Particle Swarm Optimization

YANG Fu-xing1, HU Zhi-chao1, KONG Ji-li2   

  1. 1. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2018-06-14 Online:2019-02-28 Published:2019-03-08

摘要: 经典物流配送模型的目标、约束条件不够全面,在实际应用中存在一定缺陷,对此,构建了时间窗和油耗取送一体化的物流配送路径优化模型(PDVRPTF).设计了一种基于k-medoids动态聚类混合拓扑结构粒子群算法,解决了经典粒子群算法在求解此类模型时容易陷入局部最优解的问题.仿真结果表明,改进型粒子群算法能很好地跳出局部最优解,并快速收敛于全局最优解,且该算法可有效求解物流配送路径优化的问题.

关键词: 时间窗, 取送一体化, 油耗, 动态聚类, 混合拓扑结构, 粒子群算法

Abstract: Aiming at the problem that the classic logistics distribution model considers the target, the constraints are not comprehensive enough and there are certain defects in the practical application, a integrated pickup and distribution vehicle routing problem on the basis of the classical model considering time window and fuel consumption (PDVRPTF) is constructed. Hybrid topological structure of particle swarm optimization based on k-medoids dynamic clustering is designed, which solves the problem that classical particle swarm optimization is easy to fall into local optimal solution when solving such models. The simulation results show that the improved particle swarm optimization can jump out of the local optimal solution quickly and converge to the global optimal solution quickly, which solve the logistics distribution path optimization problem effectively.

Key words: time window, integrated pickup and distribution, fuel consumption, dynamic clustering, hybrid topological structure, particle swarm optimization

中图分类号: