北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (s1): 63-67.doi: 10.13190/j.jbupt.2017.s.014

• 论文 • 上一篇    下一篇

虚拟计算环境下基于聚类的资源匹配优化模型

秦童1, 孙斌1, 朱春鸽2, 刘悦1, 胡秀妮1   

  1. 1. 北京邮电大学 信息安全中心, 北京 100876;
    2. 国家计算机网络应急技术处理协调中心, 北京 100029
  • 收稿日期:2016-05-18 出版日期:2017-09-28 发布日期:2017-09-28
  • 作者简介:秦童(1984-),女,博士生,E-mail:qintongbupt@163.com;孙斌(1967-),女,副教授.
  • 基金资助:
    国家242信息安全计划项目(2015A136)

Resource Matching Optimization Model Based on Clustering under VCE

QIN Tong1, SUN Bin1, ZHU Chun-ge2, LIU Yue1, HU Xiu-ni1   

  1. 1. Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China
  • Received:2016-05-18 Online:2017-09-28 Published:2017-09-28

摘要: 虚拟计算环境中任务具有数量庞大、需求模糊、种类多样等特征,使得资源匹配面临巨大挑战. 依据虚拟计算实验床平台公布数据,提出了一种融合虚拟资源与任务聚类的资源匹配优化模型. 该模型通过分析任务需求、消耗等特征,基于改进二分K均值进行任务聚类,并结合虚拟资源类型生成优化的资源匹配列表. 经实验分析验证,该模型有效缩小资源匹配范围,提高任务运行成功率,为精准匹配提供基础.

关键词: 任务聚类, 二分K均值, 资源匹配, 虚拟计算环境

Abstract: Under virtual computing environment(VCE), tasks have features of large quantity, ambiguous requirements, and various types. This makes resource matching face enormous challenges. According to the data published by VCE platform, a resource matching optimization model combined with resource and task clustering was proposed. By analyzing task requirements and consumption characteristics, the model clustered tasks based improved bised K-means, and combined with the virtual resource types to generate optimized matching resource list. The experimental analysis verified that the model effectively reduced resource matching range and improved the successful rate of tasks to provide the foundation for precision matching.

Key words: task clustering, bisect K-means, resource matching, virtual computing environment

中图分类号: