北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (1): 41-46.doi: 10.13190/j.jbupt.2017-082

• 论文 • 上一篇    下一篇

脉冲噪声环境下的空闲信道检测方案

陶艺文1, 陆阳2, 安春燕2, 李斌1, 赵成林1   

  1. 1. 北京邮电大学 信息与通信工程学院, 北京 100876;
    2. 国家电网有限公司 全球能源互联网研究院, 北京 102209
  • 收稿日期:2017-05-26 出版日期:2019-02-28 发布日期:2019-03-08
  • 通讯作者: 赵成林(1964-),男,教授,博士生导师,E-mail:taoyw@bupt.edu.cn. E-mail:taoyw@bupt.edu.cn
  • 作者简介:陶艺文(1993-),男,博士生.
  • 基金资助:
    国家科技重大专项项目(2018ZX03001022)

Idle Channel Detection Scheme under Impulsive Noise Environments

TAO Yi-wen1, LU Yang2, AN Chun-yan2, LI Bin1, ZHAO Cheng-lin1   

  1. 1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Global Energy Interconnection Research Institute, State Grid Corporation of China, Beijing 102209, China
  • Received:2017-05-26 Online:2019-02-28 Published:2019-03-08

摘要: 针对复杂电磁脉冲噪声环境下的空闲信道检测难题,提出一种基于贝叶斯统计推理框架的新检测算法.为了应对脉冲干扰并提升检测精度,建立了一种全新的动态状态空间模型,采用伯努利随机有限集来描述脉冲噪声与信道状态的动态变化特性.在此基础上,基于序贯估计与粒子滤波理论,设计出一种新型信道检测机制.在检测信道状态的同时,对脉冲噪声出现时间和幅值进行联合估计,有效消除了其对信道检测的干扰;同时,通过发掘脉冲噪声的动态特性,显著提升了信道检测性能,为复杂电磁环境下的高可靠信道检测提供了一种新的解决方案.数值仿真验证了所提算法的有效性.

关键词: 空闲信道检测, 脉冲噪声, 贝叶斯随机滤波, 粒子滤波, 联合估计

Abstract: Aiming at the idle channel detection problem under impulsive noise environments, a new detection scheme is proposed based on Bayesian statistical reasoning framework. To cope with impulsive interference and improve probability of detection, a novel dynamic state-space model is established, in which the dynamic variations of impulsive noise and channel status are described by Bernoulli random finite sets. On the basis of above, a novel channel detection mechanism is designed based on sequential estimation and particle filtering theory. At the same time of detecting channel status, the proposed scheme jointly estimates the occurrence and amplitude of impulsive noise, therefore eliminating its interference on channel detection. Moreover, the channel detection performance can be significantly improved based on utilizing the dynamic property of impulsive noise, thus providing a promising solution for channel detection with high reliability under complex electromagnetic environments. Numerical simulations verify the effectiveness of the proposed algorithm.

Key words: idle channel detection, impulsive noise, Bayesian stochastic filter, particle filtering, joint estimation

中图分类号: