北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (5): 1-5,32.doi: 10.13190/j.jbupt.2016.05.001

• 论文 •    下一篇

一种多尺度嵌套卷积神经网络模型

连自锋1,2, 景晓军1,2, 孙松林1,2, 黄海2   

  1. 1. 北京邮电大学 信息与通信工程学院, 北京 100876;
    2. 北京邮电大学 可信分布式计算与服务教育部重点实验室, 北京 100876
  • 收稿日期:2015-09-16 出版日期:2016-10-28 发布日期:2016-12-02
  • 作者简介:连自锋(1984-),男,博士生,E-mail:lianzf@bupt.edu.cn;景晓军(1965-),男,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61143008,61471066);国家高技术研究发展计划(863计划)项目(2011AA01A204)

Multi-Scale Convolutional Neural Network Model with Multilayer Maxout Networks

LIAN Zi-feng1,2, JING Xiao-jun1,2, SUN Song-lin1,2, HUANG Hai2   

  1. 1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2015-09-16 Online:2016-10-28 Published:2016-12-02

摘要: 卷积神经网络模型要求训练图像与测试图像在空间尺度上一致.为弱化这一限制,对卷积层特征提取器进行多尺度改进,提出了一种尺度不变卷积神经网络模型,以自动适应输入图像在平面空间上的尺度变化.同时,将多层Maxout网络嵌入新模型中,以进一步提高特征提取能力,提高图像识别与分类的准确性.实验测试结果表明,该模型提高了传统卷积神经网络模型的尺度不变性和分类精度.

关键词: 卷积神经网络, 尺度不变, Maxout, 深度学习

Abstract: Convolution neural network models require the consistency of spatial scales between training images and testing images. In order to alleviate this restriction, a scale invariant convolution neural network model with multi-scale feature extractor was proposed, which can adapt to the in-plane scale change of input images. Meanwhile, multi-layer Maxout networks are nested into the model in order to improve the ability of feature extraction, so as to improve the accuracy of image recognition and classification. Experiments show that the new model improves the scale invariance and classification accuracy of traditional convolution neural networks.

Key words: convolutional neural networks, scale-invariant, Maxout, deep learning

中图分类号: