[1] Goodfellow I J, Warde-Farley D, Mirza M, et al. Maxout networks[J]. Computer Science, 2013, 28: 1319-1327.
[2] Wan Li, Zeiler M, Zhang Sixin, et al. Regularization of neural networks using dropconnect[C]//International Conference on Machine Learning. Atlanta, USA:[s.n.], 2013: 1058-1066.
[3] Farabet C, Couprie C, Najman L, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8): 1915-1929.
[4] Sohn K, Lee H. Learning invariant representations with local transformations[C]//In Proceedings of the 29th International Conference on Machine Learning (ICML). Edinburgh, Scotland:[s. n. ], 2012: 1311-1318.
[5] Kanazawa A, Sharma A, Jacobs D. Locally scale-invariant convolutional neural networks[C]//NIPS 2014 Workshop on Deep Learning and Representation Learning. Montreal, Canada:[s. n. ], 2014: 982-992.
[6] Goodfellow I, Lee H, Le Q V, et al. Measuring invariances in deep networks[C]//Advances in neural information processing systems. Vancouver, B. C., Canada:[s. n. ], 2009: 646-654.
[7] Krizhevsky A. Learning multiple layers of features from tiny images[D]. Toronto, Canada: Department of Computer Science, University of Toronto, 2009.
[8] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4): 212-223. |