北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (4): 39-43.doi: 10.13190/j.jbupt.2014.04.009

• 论文 • 上一篇    下一篇

基于遗传算法的BP神经网络服装销售预测方法

罗戎蕾1,2, 刘绍华3, 苏晨2   

  1. 1. 浙江理工大学 服装学院, 杭州 310018;
    2. 浙江省服装工程技术研究中心, 杭州 310018;
    3. 北京邮电大学 电子工程学院, 北京 100876
  • 收稿日期:2013-07-07 出版日期:2014-08-28 发布日期:2014-08-09
  • 作者简介:罗戎蕾(1974-),女,副教授,E-mail:luoronglei@163.com.
  • 基金资助:

    浙江省重点科技创新团队计划资助项目(2011R50004);浙江自然科学基金资助项目(LQ12F02018);国家自然科学基金项目(60703036)

Garment Sales Forecast Method Based on Genetic Algorithm and BP Neural Network

LUO Rong-lei1,2, LIU Shao-hua3, SU Chen2   

  1. 1. School of Fashion, Zhejiang Sci-Tech University, Hangzhou 310018, China;
    2. Engineering Research Center of Clothing of Zhejiang Province, Hangzhou 310018, China;
    3. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2013-07-07 Online:2014-08-28 Published:2014-08-09

摘要:

针对服装企业产品销售的复杂性以及特殊性,提出一种有效的神经网络学习模型. 在对服装销售影响因子分析的基础上建立销售预测网络模型,利用遗传算法对后向传播神经网络的各连接权值进行优化计算. 方法综合了后向传播神经网格和遗传算法两者的优势,既具有神经网络强大的学习能力,又具有遗传算法的全局搜索能力.

关键词: 销售预测, 遗传算法, 后向传播神经网络

Abstract:

The neural network learning models was proposed, focusing on complexity and particularity of product sales in garment industry. The network model was established to predict the impact on garment sales on basis of factor analysis and optimized by using genetic algorithms for each connection weights of back propagation (BP) neural network. The method combines the strong learning ability of the BP neural and the global search capability of genetic algorithms.

Key words: sales forecast, genetic algorithm, BP neural network

中图分类号: