Journal of Beijing University of Posts and Telecommunications ›› 2022, Vol. 45 ›› Issue (2): 1-8.doi: 10.13190/j.jbupt.2021-157
• REVIEW • Next Articles
Adaptive Integrated Navigation Based Artificial Intelligence
ZHAO Fang, WU Fan
- College of Computer Science (National Demonstrative Software College), Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2021-07-28Published:
2021-12-16
CLC Number:
Cite this article
ZHAO Fang, WU Fan. Adaptive Integrated Navigation Based Artificial Intelligence[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 1-8.
share this article
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.bupt.edu.cn/EN/10.13190/j.jbupt.2021-157
[1] ENKHTUR M, CHO S Y, KIM K H. Modified unscented Kalman filter for a multirate INS/GPS integrated navigation system[J]. ETRI Journal, 2013, 35(5):943-946. [2] DIMITRAKOPOULOS G, DEMESTICHAS P. Intelligent transportation systems[J]. IEEE Vehicular Technology Magazine, 2010, 5(1):77-84 [3] FIGUEIREDO L, JESUS I, MACHADO J A T, et al. Towards the development of intelligent transportation systems[C]//2001 IEEE Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2001:1206-1211. [4] LIN D J, DOW C R. Introduction to ITS and NTCIP[M].[S.l.]:IGI Global, 2009:32-56. [5] DRANE C, RIZOS C. Positioning systems in intelligent transportation systems[M].[S.l.]:Artech House Publishers, 1997:53-55. [6] QURESHI K N, ABDULLAH A H. A survey on intelligent transportation systems[J]. Middle-East Journal of Scientific Research, 2013, 15(5):629-642. [7] FARUQI F A, TURNER K J. Extended Kalman filter synthesis for integrated global positioning/inertial navigation systems[J]. Applied Mathematics and Computation, 2000, 115(2/3):213-227. [8] JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]//Proceedings of 1995 American Control Conference-ACC'95. Piscataway, NJ:IEEE Press, 1995:1628-1632. [9] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188. [10] YANG Y X, HE H, XU G. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75(2/3):109-116. [11] 杨元喜,高为广.基于多传感器观测信息抗差估计的自适应融合导航[J].武汉大学学报·信息科学版, 2004, 29(10):885-888. YANG Y X, GAO W G. Integrated navigation based on robust estimation outputs of multi-sensor measurements and adaptive weights of dynamic model information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):885-888. [12] 杨元喜,高为广.基于方差分量估计的自适应融合导航[J].测绘学报, 2004, 33(1):22-26. YANG Y X, GAO W G. Integrated navigation by using variance component estimates of multi-sensor measurements and adaptive weights of dynamic model information[J]. Acta Geodaetica et Cartographic Sinica, 2004, 33(1):22-26. [13] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676):354-359. [14] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [15] BAYS P M, HUSAIN M. Dynamic shifts of limited working memory resources in human vision[J]. Science, 2008, 321(5890):851-854. [16] SHARAF R, NOURELDIN A, OSMAN A, et al. Online INS/GPS integration with a radial basis function neural network[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(3):8-14. [17] ABDEL-HAMID W, NOURELDIN A, EL-SHEIMY N. Adaptive fuzzy prediction of low-cost inertial-based positioning errors[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(3):519-529. [18] BROSSARD M, BONNABEL S. Learning wheel odometry and IMU errors for localization[C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2019:291-297. [19] XU Z K, LI Y, RIZOS C, et al. Novel hybrid of LS-SVM and Kalman filter for GPS/INS integration[J]. Journal of Navigation, 2010, 63(2):289-299. [20] NOURELDIN A, KARAMAT T B, EBERTS M. D, et al. Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3):1077-1096. [21] SHEN C, ZHANG Y, TANG J, et al. Dual-optimization for a MEMS-INS/GPS system during GPS outages based on the cubature Kalman filter and neural networks[J]. Mechanical Systems and Signal Processing, 2019, 133:106-112. [22] CHEN X Y, SHEN C, ZHANG W B, et al. Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages[J]. Measurement, 2013, 46(10):3847-3854. [23] LI J, SONG N F, YANG G L, et al. Improving positioning accuracy of vehicular navigation system during GPS outages utilizing ensemble learning algorithm[J]. Information Fusion, 2017, 35(C):1-10. [24] ZHANG Y X. A fusion methodology to bridge GPS outages for INS/GPS integrated navigation system[J]. IEEE Access, 2019, 7:61296-61306. [25] LU S Q, GONG Y L, LUO H Y, et al. Heterogeneous multi-task learning for multiple pseudo-measurement estimation to bridge GPS outages[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(8500916):1-16. [26] CHEN G, JIA Q X, SUN H X, et al. Non-holonomic path planning of space robot based on newton iteration[C]//20108th World Congress on Intelligent Control and Automation. Piscataway, NJ:IEEE Press, 2010:6534-6538. [27] POLCHANKAJORN P, MANEEWARN T. Helical controller for modular snake robot with non-holonomic constraint[C]//The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI), Association of Thailand-Conference 2011. Piscataway, NJ:IEEE Press, 2011:589-592. [28] NIU X J, NASSAR S, EL-SHEIMY N. An accurate land-vehicle MEMS IMU/GPS navigation system using 3D auxiliary velocity updates[J]. Navigation, 2007, 54(3):177-188. [29] BROSSARD M, BARRAU A, BONNABEL S. AI-IMU dead-reckoning[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4):585-595. [30] XIAO Y M, LUO H Y, ZHAO F, et al. Residual attention network-based confidence estimation algorithm for non-holonomic constraint in GNSS/INS integrated navigation system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11):11404-11418. [31] 高钟毓,王进,董景新,等.惯性测量系统零速修正的几种估计方法[J].中国惯性技术学报, 1995, 3(2):24-29, 39. GAO Z Y, WANG J, DONG J X, et al. A comparison of ZUPT estimation methods for inertial survey systems[J]. Journal of Chinese Inertial Technology, 1995, 3(2):24-29, 39. [32] YANG C J, GAO Z Y, LI D S. Hybrid filter combining with ZUPT for vehicle MINS[C]//20102nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Piscataway, NJ:IEEE Press, 2010:370-374. [33] 徐海鑫,孙付平,潘文超,等.零角度修正在GNSS/INS组合导航中的应用[J].测绘科学技术学报, 2015, 32(6):570-573. XU H X, SUN F P, PAN W C, et al. The application of zero-angle update in the GNSS/INS integrated navigation[J]. Journal of Geomatics Science and Technology, 2015, 32(6):570-573. [34] BEN Y Y, YIN G S, GAO W, et al. Improved filter estimation method applied in zero velocity update for SINS[C]//2009 International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2009:3375-3380. [35] WAGSTAFF B, KELLY J. LSTM-based zero-velocity detection for robust inertial navigation[C]//2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Piscataway, NJ:IEEE Press, 2018:1-8. [36] AKHLAGHI S, ZHOU N, HUANG Z Y. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[C]//2017 IEEE Power and Energy Society General Meeting. Piscataway, NJ:IEEE Press, 2017:1-5. [37] DING W D, WANG J L, RIZOS C. Improving covariance based adaptive estimation for GPS/INS integration[J]. The Journal of Navigation, 2007, 60(3):517-529. [38] RUI C. K-means aided Kalman filter noise estimation calibration for integrated GPS/INS navigation[C]//2016 IEEE International Conference on Intelligent Transportation Engineering. Piscataway, NJ:IEEE Press, 2016:156-161. [39] WANG J J, WANG J, SINCLAIR D, et al. A neural network and Kalman filter hybrid approach for GPS/INS integration[C]//200612th IAIN Congress. New York:Elsevier, 2006:277-282. [40] LIU K, OK K, VEGA-BROWN W, et al. Deep inference for covariance estimation:learning Gaussian noise models for state estimation[C]//2018 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2018:1436-1443. [41] GAO X L, LUO H Y, NING B K, et al. RL-AKF:an adaptive Kalman filter navigation algorithm based on reinforcement learning for ground vehicles[J]. Remote Sensing, 2020, 12(11):1704. [42] WU F, LUO H Y, JIA H W, et al. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-13. [43] GAO N, WANG M Y, ZHAO L. An integrated INS/GNSS urban navigation system based on fuzzy adaptive Kalman filter[C]//201635th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2016:5732-5736. [44] ZHANG Q, YANG Y F, XIANG Q, et al. Noise adaptive Kalman filter for joint polarization tracking and channel equalization using cascaded covariance matching[J]. IEEE Photonics Journal, 2018, 10(1):1-11. [45] HE Q S, WEI C, XU Y Z. An improved adaptive Kalman filtering algorithm for balancing vehicle[C]//2017 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE Press, 2017:5721-5725. [46] SAGE A P, HUSA G W. Algorithms for sequential adaptive estimation of prior statistics[C]//1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control. Piscataway, NJ:IEEE Press, 1969:61. [47] GAO S S, FENG Z H, LI H X. Random weighting estimation of white noise error characteristic in integrated INS/GPS/SAR system[C]//2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06). Piscataway, NJ:IEEE Press, 2006:50. [48] ABBEEL P, COATES A, MONTEMERLO M, et al. Discriminative training of Kalman filters[C]//Robotics:Science and Systems I. Cambridge:MTT Press, 2005:289-296. [49] LIU K, OK K, VEGA-BROWN W, et al. Deep inference for covariance estimation:learning Gaussian noise models for state estimation[C]//2018 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2018:1436-1443. [50] HAARNOJA T, AJAY A, LEVINE S, et al. Backprop KF:learning discriminative deterministic state estimators[C]//2016 International Conference on Neural Information Processing Systems. Berlin:Springer, 2016:4383-4391. [51] ABDOLKARIMI E S, MOSAVI M R, ABEDI A A, et al. Optimization of the low-cost INS/GPS navigation system using ANFIS for high speed vehicle application[C]//2015 Signal Processing and Intelligent Systems Conference (SPIS). Piscataway, NJ:IEEE Press, 2015:93-98. [52] CHEN L, FANG J C. A hybrid prediction method for bridging GPS outages in high-precision POS application[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(6):1656-1665. |
[1] | . Research progress of potential applications of AI in 6G air interface physical layer [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 22-31. |
[2] | ZHENG Feng, YANG Li. Joint Beamforming Scheme Based on PSO Algorithm for RIS-MIMO System [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 23-29. |
[3] | WU Zhen-yu, SHI Chang. Agile AIOps Framework and Maintenance Data Quality Assessment Method [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(6): 96-102,133. |
[4] | Lü Xin-chen, ZHANG Chen-yu. Edge Intelligence Multi-Source Data Processing for Autonomous Driving in Internet of Vehicles [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(2): 102-108. |
[5] | PENG Mu-gen, SUN Yao-hua, WANG Wen-bo. Intelligent-Concise Radio Access Networks in 6G: Architecture, Techniques and Insight [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 1-10. |
[6] | LU Xiao-feng, WANG Xiao-ming, SHA Jing. A Dynamic Influence Map Model Based on Distance Adjustment [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2019, 42(2): 50-56. |
[7] | CUI Hong-yan, XU Shuai, ZHANG Li-feng, Roy E. Welsch, Berthold K. P. Horn. The Key Techniques and Future Vision of Feature Selection in Machine Learning [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2018, 41(1): 1-12. |
[8] | XIONG Wen, JIN Yao-hong. Hybrid Clustering Using ACO and AHC [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2013, 36(3): 60-63,78. |
[9] | CHU Ming, CHEN Gang, JIA Qing-xuan, SUN Han-xu. Compensation Control for Model-Free Dynamic Friction Using Self-Recurrent Wavelet Neural Networks [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2013, 36(3): 16-19. |
[10] | ZHANG Su-xiang. Business Intelligence in the Smart Community [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2012, 35(5): 94-97. |
[11] | ZHONG Yi-xin. Advanced Intelligence-Mechanism Approach-Information Conversion [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2010, 33(1): 1-6. |
[12] | ZHONG Yi-xin. On the Laws of Information-Knowledge-Intelligence Transforms [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2007, 30(1): 1-8. |
[13] | XU Jun-jie, XIN Zhan-hong. Research of Particle Swarm Optimization Based on a Two-Stage Strategy [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2007, 30(1): 136-139. |
[14] |
YUAN Kai-guo 1,YANG Ya-tao 1,2,ZHANG Ru 1,NIU Xin-xin 1,YANG Yi-xian1 . A Narrowband Audio Hiding Algorithm Based on Human Auditory System [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2006, 29(s2): 101-104. |
[15] | ZHONG Yi-xin. A Secret Making AI Theory from Separation to Unification [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2006, 29(3): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||