[1] Rao Q, Frtunikj J. Deep learning for self-driving cars:chances and challenges[C]//Proceedings of the 1st International Workshop on Software Engineering for AI in Autonomous Systems. New York:Association for Computing Machinery, 2018:35-38. [2] Kavzoglu T. Increasing the accuracy of neural network classification using refined training data[J]. Environmental Modelling and Software, 2009, 24(7):850-858. [3] 吴振铨, 叶东东, 余荣, 等. 车联网中基于停车协同的边缘计算卸载方法[J]. 北京邮电大学学报, 2019, 42(2):108-113. Wu Zhenquan, Ye Dongdong, Yu Rong, et al. Edge computing offloading with parked vehicular collaboration in Internet of vehicles[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(2):108-113. [4] Qiao Guanghua, Leng Supeng, Zhang Ke, et al. Collaborativetask offloading in vehicular edge multi-access networks[J]. IEEE Communications Magazine, 2018, 56(8):48-54. [5] He Zongjian, Zhang Daqiang, Liang Junbin. Cost-efficient sensory data transmission in heterogeneous software-defined vehicular networks[J]. IEEE Sensors Journal, 2016, 16(20):7342-7354. [6] Deng Shuiguang, Zhao Hailiang, Fang Weijia, et al. Edge intelligence:the confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020, 7(8):7457-7469. [7] Zhao Yue, Li Meng, Lai Liangzhen, et al. Federated learning with non-IID data[EB/OL]. 2018(2018-06-02)[2020-12-03]. http://arxiv.org/abs/1806.00582arXiv:1806.00582. [8] 李静林, 袁泉, 杨放春. 车联网群智感知与服务[J]. 中兴通讯技术, 2015, 21(6):6-9. Li Jinglin, Yuan Quan, Yang Fangchun. Crowd sensing and service in Internet of vehicles[J]. ZTE Technology Journal, 2015, 21(6):6-9. [9] Benda D, Chu X, Sun S, et al. Renewable energy sharing among base stations as a min-cost-max-flow optimization problem[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(1):67-78. [10] Jiang D, Delgrossi L. IEEE 802.11 p:towards an international standard for wireless access in vehicular environments[C]//VTC Spring 2008-IEEE Vehicular Technology Conference. Piscataway:IEEE, 2008:2036-2040. |