[1] XIE J C, ZHANG D L, XU W L. Wavelet image denoi-sing based on multiscale stochastic process coefficient model[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(9):1222-1225. 谢杰成, 张大力, 徐文立. 基于小波系数多尺度随机过程模型的去噪方法[J]. 清华大学学报(自然科学版), 2003, 43(9):1222-1225. [2] DABOV K, FOI A, KATKOVNIK V, et al. Color image denoising via sparse 3D collaborative filtering with grou-ping constraint in luminance chrominance space[C]//IEEE International Conference on Image Processing. Piscataway:IEEE Press, 2007:I-313-I-316. [3] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Proce-ssing, 2017, 26(7):3142-3155. [4] PLÖTZ T, ROTH S. Neural nearest neighbors networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York:Curran Associates Inc, 2018:1095-1106. [5] REMEZ T, LITANY O, GIRYES R, et al. Class-aware fully convolutional Gaussian and poisson denoising[J]. IEEE Transactions on Image Processing, 2018, 27(11):5707-5722. [6] GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:1712-1722. [7] YUE Z S, YONG H W, ZHAO Q, et al. Variational denoi-sing network:toward blind noise modeling and removal[C]//Advances in neural information processing systems. New York:Curran Associates, 2019:1690-1701. [8] HOU Y K, XU J, LIU M X, et al. NLH:a blind pixel-level non-local method for real-world image denoising[J]. IEEE Transactions on Image Processing, 2020, 29:5121-5135. [9] KRAVITZ D J, SALEEM K S, BAKER C I, et al. The ventral visual pathway:an expanded neural framework for the processing of object quality[J]. Trends in Cognitive Sciences, 2013, 17(1):26-49. [10] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:1692-1700. [11] PLÖTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Press, 2017:1586-1595. [12] NAM S, HWANG Y, MATSUSHITA Y, et al. A holistic approach to cross-channel image noise modeling and its application to image denoising[C]//Computer Vision & Pattern Recognition. Piscataway:IEEE Press, 2016:1683-1691. [13] CHEN Y J, POCK T. Trainable nonlinear reaction diffusion:a flexible framework for fast and effective image restoration[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6):1256-1272. [14] GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Press, 2014:2862-2869. |