[1] 杨陟卓, 黄河燕.基于异构关系网络图的词义消歧研究[J].计算机研究与发展, 2013, 50(2):437-444.Yang Zhizhuo, Huang Heyan.WSD method based on heterogeneous relation graph[J].Journal of Computer Research & Development, 2013, 50(2):437-444.
[2] Koppula N, Rani B P, Rao K S.Graph based word sense disambiguation[C]//The 1st International Conference on Computational Intelligence and Informatics.Hyderabad:Springer, 2017:665-670.
[3] Duque A, Martinezromo J, Araujo L.Can multilinguality improve biomedical word sense disambiguation?[J].Journal of Biomedical Informatics, 2016, 64(1):320-332.
[4] 杨安, 李素建, 李芸.基于领域知识和词向量的词义消歧方法[J].北京大学学报(自然科学版), 2017, 53(2):204-210.Yang An, Li Sujian, Li Yun.Word sense disambiguation based on domain knowledge and word vector model[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(2):204-210.
[5] 李赟, 黄开妍, 任福继, 等.维基百科的中文语义相关词获取及相关度分析计算[J].北京邮电大学学报, 2009, 32(3):109-112.Li Yun, Huang Kaiyan, Ren Fuji, et al.Wikipedia based semantic related Chinese words exploring and relatedness computing[J].Journal of Beijing University of Posts and Telecommunications, 2009, 32(3):109-112.
[6] Faisal E, Nurifan F, Sarno R.Word sense disambiguation in Bahasa Indonesia using SVM[C]//The 3rd International Seminar on Application for Technology of Information and Communication.Semarang:IEEE, 2018:239-243.
[7] 王桐, 王磊, 吴吉义, 等.WordNet中的综合概念语义相似度计算方法[J].北京邮电大学学报, 2013, 36(2):98-106.Wang Tong, Wang Lei, Wu Jiyi, et al.Semantic similarity calculation method of comprehensive concept in WordNet[J].Journal of Beijing University of Posts and Telecommunications, 2013, 36(2):98-106.
[8] 李源, 翟宏森, 刘凤娇, 等.汉语复句中基于依存关系与最大熵模型的词义消歧方法研究[J].计算机与数字工程, 2018, 46(1):78-82.Li Yuan, Zhai Hongsen, Liu Fengjiao, et al.Research on word sense disambiguation method based on dependency relation and maximum entropy in Chinese complex sentences[J].Computer & Digital Engineering, 2018, 46(1):78-82.
[9] 何径舟, 王厚峰.基于特征选择和最大熵模型的汉语词义消歧[J].软件学报, 2010, 21(6):1287-1295.He Jingzhou, Wang Houfeng.Chinese word sense disambiguation based on maximum entropy model with feature selection[J].Journal of Software, 2010, 21(6):1287-1295.
[10] Gutierrez Y, Vazquez S, Montoyo A.Spreading semantic information by word sense disambiguation[J].Knowledge-Based Systems, 2017, 132(1):47-61.
[11] Jimeno Y A.Word embeddings and recurrent neural networks based on long-short term memory nodes in supervised biomedical word sense disambiguation[J].Journal of Biomedical Informatics, 2017, 73(1):137-147.
[12] Huang Zhehuang, Chen Yidong.An improving SRL model with word sense information using an improved synergetic neural network model[J].Journal of Intelligent & Fuzzy Systems, 2016, 31(3):1469-1480.
[13] Tripodi R, Pelillo M.A game-theoretic approach to word sense disambiguation[J].Computational Linguistics, 2017, 43(1):31-70.
[14] Iacobacci I, Pilehvar M T, Navigli R.Embeddings for word sense disambiguation:an evaluation study[C]//The 54th Annual Meeting of the Association for Computational Linguistics.Berlin:ACL, 2016:897-907.
[15] Kang M Y, Kim B, Lee J S.Word sense disambiguation using embedded word space[J].Journal of Computing Science and Engineering, 2017, 11(1):32-38.
[16] Zhan Jingwen, Chen Yanmin.Research of Chinese word sense disambiguation based on HowNet[C]//The 2011 International Conference on Artificial Intelligence and Computational Intelligence.Taiyuan:Springer, 2011:477-482.
[17] Hung C, Chen S J.Word sense disambiguation based sentiment lexicons for sentiment classification[J].Knowledge-Based Systems, 2016, 110(1):224-232. |