[1] MAHDI C, VALENTINE K, LU Z J. Circuit lower bounds for MCSP from local pseudorandom generators[J]. ACM Transactions on Computation Theory, 2020, 12(3):1-27. [2] CHEN C, SUN K H, HE S B. A class of higher-dimensional hyperchaotic maps[J]. The European Physical Journal Plus, 2019, 134(8):1-13. [3] ALHADAWI H, ZOLKIPLI M, ISMAIL S, et al. Designing a pseudorandom bit generator based on LFSRs and a discrete chaotic map[J]. Cryptologia, 2019, 43(3):190-211. [4] LAMBIĆ D, NIKOLIĆ M. Pseudo-random number genera-tor based on discrete-space chaotic map[J]. Nonlinear Dynamics, 2017, 90(1):223-232. [5] LIU Z, WANG Y. Image compression and encryption scheme based on the two-dimensional coupled map lattice model[J]. Journal of Chongqing University of Posts and Telecommunications, 2020, 32(6):1048-1057. 刘卓, 王永. 基于二维耦合映像格子模型的图像压缩加密方案[J]. 重庆邮电大学学报, 2020, 32(6):1048-1057. [6] TANG Y L, ZHAO M J, LI L X. Research on compressed sensing security theory[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3):125-130. 汤永利, 赵明洁, 李丽香. 压缩感知安全理论研究[J]. 北京邮电大学学报, 2020, 43(3):125-130. [7] WANG Y, LIU Z L, MA J B, et al. A pseudorandom number generator based on piecewise Logistic map[J]. Nonlinear Dynamics, 2016, 83(4):2373-2391. [8] PATIDAR V, KRISHAN K, PAREEK N. A pseudo random bit generator based on chaotic Logistic map and its statistical testing[J]. Informatica, 2009, 33(4):441-452. [9] LI P, LI Z, WANG H L, et al. A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map[J]. Physics Letters A, 2006, 349(6):467-473. |