北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2009, Vol. 32 ›› Issue (2): 62-65.doi: 10.13190/jbupt.200902.62.zhaohh

• 论文 • 上一篇    下一篇

自适应的基于IPDV的网络拓扑推断技术

赵洪华 陈 鸣 吴连国   

  1. 解放军理工大学
  • 收稿日期:2008-10-09 修回日期:1900-01-01 出版日期:2009-04-28 发布日期:2009-04-28
  • 通讯作者: 赵洪华

Adaptive Topology Inference Technique Based on IPDV

Zhao Hong hua   

  • Received:2008-10-09 Revised:1900-01-01 Online:2009-04-28 Published:2009-04-28
  • Contact: Zhao Hong hua

摘要:

为了克服基于层析成像的拓扑推断技术中时钟同步及节点间合作的限制,有效减少测量流量,在拓扑推断中提出了自适应的基于时延抖动的拓扑推断算法,该算法不需要节点间的时钟同步和节点间的合作,并且产生的测量流量较少. 从理论上分析了自适应的基于时延抖动推断自适应网络拓扑的可行性和正确性,通过NS2进行了仿真,仿真结果表明,自适应的基于时延抖动推断拓扑结构的效果比基于端到端单向时延推断拓扑的效果好,并且受到的限制少.

关键词: font-family: 宋体, mso-bidi-font-size: 12.0pt, mso-bidi-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman'">自适应;font-family: 'Times New Roman', mso-bidi-font-size: 12.0pt, mso-fareast-font-family: 宋体, mso-hansi-font-family: 宋体, mso-bidi-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA"> font-family: 宋体, mso-bidi-font-size: 12.0pt, mso-bidi-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman'">时延抖动;font-family: 'Times New Roman', mso-bidi-font-size: 12.0pt, mso-fareast-font-family: 宋体, mso-hansi-font-family: 宋体, mso-bidi-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA"> font-family: 宋体, mso-bidi-font-size: 12.0pt, mso-bidi-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman'">拓扑推断

Abstract:

In order to reduce the limits of time synchronization and cooperation between nodes and reduce the measurement traffic in topology inference techniques based on tomography, a selfadaptive measurement method that measured delay variation and a selfadaptive topology inference algorithm based on delay variation are put forward. The feasibility and correctness of selfadaptive topology inferencealgorithm based on delay variation are analyzed. The algorithm is validated through simulations by NS2. The simulation indicates that the selfadaptive topology inference algorithm based on delay variation can infer network topology better than the topology inference based on one way delay and had little limit.