北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2010, Vol. 33 ›› Issue (2): 58-63.doi: 10.13190/jbupt.201002.58.yuxch

• 论文 • 上一篇    下一篇

基于小波变换和稀疏成分分析的盲图像分离法

余先川, 曹婷婷, 胡 丹, 张立保, 代 莎   

  1. (北京师范大学 信息科学与技术学院, 北京 100875)
  • 收稿日期:2009-06-13 修回日期:2009-11-30 出版日期:2010-04-28 发布日期:2010-04-28
  • 通讯作者: 余先川
  • 作者简介:余先川(1967—), 男, 教授, 博士生导师, Email: yuxianchuang@163.com.
  • 基金资助:

    基金项目: 国家高技术研究发展计划项目(2007AA12Z156); 国家自然科学基金项目(40672195, 60602035); 北京市自然科学基金(4102029)

Blind Image Separation Based on Wavelet Transformation and Sparse Component Analysis

YU Xian-chuan, CAO Ting-ting, HU Dan, ZHANG Li-bao, DAI Sha   

  1. (Department of Information Science and Technolgy, Beijing Normal University, Beijing 100875, China)
  • Received:2009-06-13 Revised:2009-11-30 Online:2010-04-28 Published:2010-04-28

摘要:

针对图像信号不满足稀疏性条件,不能直接用稀疏成分分析模型进行盲分离的现象,提出一种基于小波变换和稀疏成分分析的盲图像分离法. 利用小波分解将混合图像从空域转化到频域,获取混合图像高频对角分量,在频域空间利用线性聚类稀疏成分分析法估计混合矩阵,进而最终重构源图像. 实验结果表明,该方法能准确有效地提取源图像. 目视结果及相关系数分析结果均表明,与经典独立成分分析法(FASTICA)相比,该方法分离精度高,分离效果好. 

关键词: 小波变换, 稀疏成分分析, 盲源分离, 稀疏性; 独立成分

Abstract:

Blind source separation is one of the hot spots of signal processing domain. Considering that mixed images cant be separated with sparse component analysis (SCA) model for image doesnt always satisfy sparse conditions, a method based on wavelet transformation and SCA (WTSCA) is proposed to extract source images. WT is used to transform mixed images to frequency domain. SCA is used to estimate mixing matrix, and to reconstruct source images. The experiments manifest that WTSCA can accurately and effectively extract sources from mixed images. The visual result and correlation coefficient analysis verify that, compared to classical FASTICA, separating precision of WTSCA is higher, and separating effect is better.

Key words: wavelet transformation, sparse component analysis, blind source separation, sparseness, independent component analysis

中图分类号: