北京邮电大学学报

  • EI核心期刊

北京邮电大学学报

• •    

基于动态小波基多特征提取和度量学习的辐射源个体识别

普运伟,何志强,杜林,陈新杰   

  1. 昆明理工大学
  • 收稿日期:2024-04-08 修回日期:2024-05-20 发布日期:2024-11-22
  • 通讯作者: 普运伟
  • 基金资助:
    雷达辐射源信号模糊能量分布特征提取及其分选机制

Specific Emitter Identification via Multi-Feature Extraction and Metric Learning Based on Dynamic Wavelet Basis

  • Received:2024-04-08 Revised:2024-05-20 Published:2024-11-22

摘要: 针对当前多变的辐射源个体以及复杂的电磁环境下,雷达辐射源个体识别存在特征提取慢、识别准确率低等问题,提出一种动态小波基选择下的多特征提取和度量学习的识别方法。首先利用稀疏性原理的方法对辐射源个体信号动态选择小波基,根据节点系数能量将原信号转换为多种信号表示;然后从中提取多尺度统计特征构成特征向量集;最后采用一种改进的马氏距离度量学习算法来优化特征空间,并联合前馈神经网络用以分类识别。实验结果表明,所提方法在不同信噪比环境中对8种雷达辐射源个体信号都有良好的识别率,单个信号特征的提取平均耗时仅需0.12s。实验验证了所提方法的有效性和实时性,具有一定的工程价值。

关键词: 辐射源个体识别, 特征提取, 小波基, 度量学习, 信号表示

Abstract: In response to the variability of individual emitters and the complexity of the electromagnetic environment, radar emitter identification faces challenges such as slow feature extraction and low identification accuracy. This paper proposes a method for specific emitter identification of multi-feature extraction and metric network under dynamic wavelet bases selection. Initially, wavelet bases are dynamically selected for emitter signals using the principle of sparsity, converting the original signal into various signal representations based on the energy of node coefficients. Subsequently, multi-scale statistical features are extracted to form a set of feature vectors. Finally, an improved Mahalanobis distance metric learning algorithm is employed to optimize the feature space, in conjunction with a feedforward neural network for classification and identification. Experimental results demonstrate that the proposed method achieves good identification rates for signals from eight types of radar emitters across various signal-to-noise ratio environments, with an average feature extraction time of only 0.12 seconds per individual signal. The experiments confirm the effectiveness and real-time capabilities of the proposed method, indicating its significant engineering value.

Key words: specific emitter identification, feature extraction, wavelet basis, metric learning, signal representation

中图分类号: