北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (5): 74-81.

• 论文 • 上一篇    下一篇

基于语义推理和联合学习的壁画修复算法

陈永,杜婉君,赵梦雪   

  1. 兰州交通大学
  • 收稿日期:2023-10-09 修回日期:2024-03-27 出版日期:2024-10-28 发布日期:2024-11-10
  • 通讯作者: 陈永 E-mail:edukeylab@126.com
  • 基金资助:
    国家自然科学基金

Mural inpainting algorithm based on semantic reasoning and joint learning

  • Received:2023-10-09 Revised:2024-03-27 Online:2024-10-28 Published:2024-11-10

摘要: 针对现有深度学习算法在壁画修复时,缺乏语义约束,孤立地修复后导致修复结果存在语义不一致,结构纹理紊乱的问题,提出了一种基于语义推理和联合学习的壁画修复算法。首先,设计联合学习分层网络,将壁画分层为高层语义和低层语义,实现对不同语义的分层修复。然后,设计全局联合学习生成模块,对全局语义进行自回归建模,语义推理得到壁画全局修复信息。接着,构建局部联合学习生成模块,提出上下文聚合块,学习壁画的上下文信息,生成壁画的局部信息。最后,加入联合学习注意力机制,实现全局语义与局部语义的一致性修复,克服了孤立修复导致误差累积和语义不一致的问题。通过真实敦煌壁画的修复实验表明,所提方法较比较方法,修复结果具有更好的结构和纹理一致性,且客观评价指标优于比较算法。

关键词: 壁画修复, 语义推理, 联合学习, 上下文聚合, 联合注意力

Abstract: We propose a mural restoration algorithm based on semantic inference and dynamic joint learning to address the issues of semantic inconsistency and disordered structural textures caused by the lack of semantic constraints and isolated restoration of texture structure in existing deep learning methods for mural restoration. Firstly, a mural restoration framework based on joint learning is constructed, and a joint hierarchical network is designed to divide the mural into high-level semantics and low-level semantics, enabling hierarchical restoration of different semantics. Then, a joint global generation module is designed to model the global semantics of the mural through autoregressive modeling and infer the repaired global semantic information. Next, a joint local generation module is constructed, which introduces a context aggregation block to learn the contextual information of the mural and generate local information for the mural. Finally, a joint attention mechanism is introduced to enable collaborative training between the global semantic restoration module and the local restoration module, overcoming the issues of error accumulation and semantic inconsistency caused by isolated restoration. Experimental results on real Dunhuang murals demonstrate that the proposed method achieves better structural and texture consistency in the restoration results compared to the baseline methods, and objective evaluation metrics outperform the comparison algorithms.

Key words: Mural inpainting, Semantic reasoning, Joint learning, Context aggregation, Joint attention

中图分类号: